
Distributional Compositional Semantics

Kendra Plante

1 Introduction

We begin this paper by describing two different approaches to semantics. One
the hand, there is the traditional approach to semantics, based on the phil-
iosophy of Gottlob Frege. This approach is compositional and truth-functional.
Respectively, these notions express that the meanings of individual words can be
combined, or composed, to form the meanings of strings, and that the meaning
of a sentence is its truth value. The basic assumption underlying this philosophy
is that the meaning of a string is a function of the meanings of its parts.

For example, one model of compositional semantics is based on type theory.
The meaning of a noun is its extension, namely the set of objects in the universe
corresponding to it, or the characteristic function of this set. The meaning of an
intransitive verb is then a function from nouns (characteristic functions) to truth
values (the discrete set {0, 1}), for transitive verbs, a function from two nouns
to truth values, etc. We express these definitions in the following notation: Let
e denote the type of a noun and t the type of a truth value. Then the types of
nouns and verbs are as follows:

1. Noun: e

2. Intransitive verb: e → t

3. Transitive verb: e → (e → t)

The type of the transitive verb given above is justified by an adjunction
known as currying, namely

Hom(A×B,C) ∼= Hom(A,Hom(B,C))

which expresses the fact that a set function of two variables can be thought
of instead as a function from one set to a set of functions between sets, without
any loss of information. This adjunction will be useful to us later as well.

One clear limitation of this model of semantics is that the meaning of a
given sentence, or even of a word, is very tightly constrained. For example,
the sentences “The sky is blue” and “Clouds are white” are both true, hence,
according to the above model, they have the same meaning. But this is not
completely satisfactory, as there seems to be a sense in which they have distinct
meanings, namely in the fact that they express different thoughts. Furthermore,

1

the sentence “2 + 2 = 4” is also true, hence has the same meaning as the above
two, but there is also a sense in which we want to say that the first two are
more similar in meaning than the third, in that they both express facts about
color, or objects related to the sky, etc.

The same sort of problem arises on the level of individual words as well. Con-
sider, for example, the famous issue regarding the nouns “cordate” and “renate”.
Respectively, these refer to creatures with hearts and creatures with kidneys.
It is a fact of biology that all creatures with hearts also have kidneys, and vice
versa, i.e. a creature is a cordate if and only if it is a renate. Consequently,
these words have the same extension. It follows from the above semantic model
that they have the same meaning. Once again, this is unsatisfactory, because
they clearly express different thoughts. In the language of Frege, one may say
they have different intensions. We want a more versatile semantics which can
account for this.

A different approach to semantics which attempts to remedy these concerns
is the distributional approach. This approach is based loosely on Wittgenstein’s
philosophy of “meaning in use”, i.e. that we can understand the meaning of a
word by investigating how it is used in real discourse in relation to other words.
The term distributional here refers to a model which describes the meaning of
a word according to its usage relative to other words in some corpus.

One example of a model which takes this approach to semantics is based on
vector spaces. The basic idea is to choose some set of lemmas B (say, nouns, for
simplicity) from a corpus and generate a vector space V with B as a basis. The
basis elements B are referred to as context words. We then describe a process
for representing any other word in the corpus as a weighted vector sum of these
basis elements. Typically, this process involves counting the occurrences of each
context word in sentences containing the word with some coefficients (called
weights) to correct for the relative importance of certain contexts over others.
This procedure will generate a vector for each word in the corpus, and we define
the meaning of the word to be this vector.

This approach has the immediate advantage that we can compare meanings
of words directly, regardless of their extension. The idea is that words more
similar in meaning will result in vectors which are nearer to each other in the
vector space. We can quantify this by the cosine of the angle between them (or
equivalently, the normalized inner product). The smaller the value, the more
similar the meaning.

For example, consider a vector space which contains “food”, “pet”, and
“police” as basis vectors. We would expect that the vector for the word “cat”
would appear somewhere between “food” and “pet”, and farther from “police”,
since we would expect to find mostly sentences such as “He has a cat as a pet”
and “Get some cat food”, whereas “crime” might appear closest to “police”,
because of sentences such as “The police investigated the crime”. Finally, we
can expect that “dog” would appear close to “cat”, but perhaps also closer to
“crime” than “cat”, because of sentences like “There were police dogs at the
crime scene”. Combining all these expectations, we would expect to conclude
from such a model that “cat” and “dog” are more similar in meaning than either

2

are to “crime”.
We can also apply this model to the cordate-renate issue in a very elegant

way: Take as basis vectors the words “heart” and “kidney”. We would clearly
expect that from any corpus, the vector corresponding to “cordate” would ap-
pear closest to “heart” and likewise for “renate” and “liver”. Hence, we see the
aforementioned concerns resolved exactly in accordance with our intuition.

One obvious limitation of this model as described is that it provides no way
of combining words into strings, i.e. it is not compositional. The unfortunate
consequence of this is that we are unable to say anything about the meaning
of phrases or sentences. In this paper, we outline a model which combines the
distributional and compositional approaches to semantics in order to reap the
benefits of both.

2 Mathematical Background

In order to motivate and develop the distributional compositional model of
semantics, it is necessary to build up some mathematical background. In par-
ticular, we will need to understand the notion of a compact closed monoidal
category, and in particular, we will need to understand the natural compact
closed monoidal structures on the category of finite dimensional vector spaces
and the category of pregroups. Since we will only work with monoidal categories
in this paper, we will introduce it as a single concept.

Definition 1. A monoidal category consists of the following data:

1. A family C of objects

2. A set of morphisms Hom(A,B) for each object A,B ∈ C

3. An associative binary operation ⊗ : C × C → C

subject to the following axioms:

1. For each ordered triple of objects (A,B,C) and each pair of morphisms
f : A → B and g : B → C, there is a composite morphism g ◦ f : A →
C, where the composition ◦ : Hom(B,C) × Hom(A,B) → Hom(A,C) is
associative.

2. For each object A, there is an identity morphism 1A : A → A such that,
for f : A → B, we have f ◦ 1A = f and 1B ◦ f = f .

3. There is a unit object I which satisfies I ⊗A = A = A⊗ I.

4. For each ordered pair of morphisms (f : A → C, g : B → D), there is a
bifunctorial parallel composite morphism f ⊗ g : A ⊗ B → C ⊗ D, such
that (g1 ⊗ g2) ◦ (f1 ⊗ f2) = (g1 ◦ f1)⊗ (g2 ◦ f2).

3

We will typically use C alone to denote the category. Note that in this
definition, the binary operation ⊗, subject to the axioms which govern it, is the
monoidal structure on C.

Loosely speaking, a monoidal category is a category together with a binary
operation on its objects which “acts” like multiplication. This operation is
typically called the tensor product and denoted by the symbol ⊗. The reason
for this is that the standard tensor product on vector spaces turns the category
VectK of vector spaces (over a field K) into a monoidal category, where the
identity 1 is given by the underlying fieldK. (In this paper, we will be concerned
only with finite dimensional vector spaces over R, which we will denote by
FVect.)

Recall that the tensor product on vector spaces has the following additional
structure: It is commutative up to isomorphisms, i.e. V ⊗W ∼= W ⊗ V . Also,
every bilinear function factors uniquely through the tensor product, i.e. for
every bilinear function ϕ : V × W → Z, there is a unique linear function
ϕ′ : V ⊗W → Z such that ϕ′(v⊗w) = ϕ(v, w). In other words, ϕ′ is the unique
map which makes the following diagram commute

V ×W Z

V ⊗W

ϕ

π
ϕ′

where π : V × W → V ⊗ W is the canonical map (v, w) 7→ v ⊗ w. This is
known as the universal property of the tensor product.

Finally, we have the following natural isomorphism known as the tensor-hom
adjunction which generalizes the process of currying mentioned above

Hom(X ⊗ Y,Z) ∼= Hom(X,Hom(Y,Z))

Another monoidal category which will be important to us is that of a pre-
group.

Definition 2. A pregroup is a set P together with a partial order relation ≤
and a monoidal multiplication ∗, such that for every x ∈ P , there exist elements
xl, xr ∈ P such that

xl ∗ x ≤ 1 x ∗ xr ≤ 1

1 ≤ x ∗ xl 1 ≤ xr ∗ x

In practice, we will omit the symbol ∗ between elements and write ab instead
of a ∗ b. We let Preg denote the category of pregoups, with morphisms given
by order preserving maps which commute with the monoidal multiplication.

The elements xl and xr are called the left and right adjoints of x, respec-
tively. Note that every pregroup is a monoidal category itself with elements of

4

P as objects, a morphism a → b whenever a ≤ b, and ∗ as the monoidal mul-
tiplication. Note that this multiplication is in general not commutative. The
additional structure present in this category, namely that characterized by the
left and right adjoints, is a special case of a property called compact closure.

Definition 3. A monoidal category is compact closed if for each object A there
are objects Al and Ar such that there exist maps

Al ⊗A → 1 A⊗Ar → 1

1 → A⊗Al 1 → Ar ⊗A

Observe that the category of finite dimensional vector spaces with tensor
product is also compact closed, where the left and right adjoint of any vector
space is its dual, i.e. V l = V r = V ∗. Finally, since V is finite dimensional,
V ∗ = V . Hence, each element is its own left and right adjoint. Thus, in FVect,
the maps Al ⊗ A → 1 and A⊗ Ar → 1 are both the same map A⊗ A → R. It
can be shown that this map is given explicitly by∑

i,j

cijvi ⊗ wj 7→
∑
i,j

cij⟨vi, wj⟩

where ⟨, ⟩ is the standard inner product. This makes it computable, which
will be important to us later.

The key idea of this paper will be exploiting this common structure between
pregroups and finite dimensional vector spaces with tensor product in order
to construct a semantics which is both compositional and distributional. But
before we begin this construction, we must outline how pregroups can be used
to model syntax.

3 Lambek Calculus

In order to model syntax using the algebra of pregroups, we will assign gram-
matical types to each word, use the monoidal multiplication to combine them,
and use the adjoint relations to reduce complex types to phrase or sentence
types. The particular schema we will describe is known as the Lambek calculus.
Since we only need a very basic grammar for the purposes of this paper, we will
stick to basic sentences of the form noun-verb-noun.

Let n denote the type of a noun and s the type of a (grammatical) sentence.
Then a grammar which contains nouns, intransitive, and transitive verbs has
the following types:

1. Noun: n

2. Intransitive verb: nrs

3. Transitive verb: nrsnl

5

The use of the adjoints in the verb types express the fact that, for example,
a transitive verb must take a noun on the left and on the right in order to form
a grammatical sentence. This is best illustrated by an example.

Say we have the sentence “Jack likes Jill”. Gluing together the types of
each word in the proper order, we find that this sentence has the complex type
n(nrsnl)n, with parentheses used only to indicate which type comes from which
word. Using associativity of the multiplication and applying the properties
which define the adjoints, we obtain the following reduction

n(nrsnl)n → (nnr)s(nln) → 1s1 → s

The interpretation of this computation is that “Jack likes Jill” has the type
of a sentence, which is to say that it is grammatical.

4 Distributional Semantics

The general notion of distributional semantics, as well a common and practical
model involving vector spaces, was explained in the introduction. We recall the
basics here: Choose from some corpus X a finite set of lemmas B = {b1, . . . , bn}
and let V be the vector space generated by B. For each word x ∈ X, take the
set of sentences Y in X which contain x. For each bi ∈ B, let ai denote the
number of times bi occurs in Y , i.e. the number of times x and bi occur in the
same sentence. We then assign to x the vector in V given by

x =

n∑
i=1

aibi

Note that we may also assign weights to the coefficients ai to account for
the importance of the lemma bi relative to x, and this is often done in practice,
but it will not be necessary for our purposes to explore this.

We repeat this process for each x ∈ X and we call this vector the meaning of
x. This proves useful in capturing the meaning of x relative to the meanings of
other words in X, in the sense that words with more similar meanings result in
vectors which are closer together. With this in mind, we quantify the similarity
between words in terms of the angle between them.

Definition 4. For two words x, y ∈ V , we define the degree of similarity d
between x and y to be

d =
⟨x, y⟩
|x||y|

= cos θ

where ⟨., .⟩ is the usual inner product, |.| is the usual norm, and θ is the
angle between x and y.

Note that the above simply gives the definition in two different but equivalent
ways: the cosine of the angle between them is easier to visualize, whereas the

6

normalized inner product provides a means of computing the degree without
needing to know the angle explicitly before-hand.

These vector space models of distributional semantics have proved very ef-
fective in recent history at a variety of natural language processing tasks, such
as automatic thesaurus building. It is therefore desirable to extend these models
so that they are able to capture the semantics of composite linguistic expres-
sions, such as phrases and sentences. In other words, given a pair of vectors x
and y representing the meanings of two words in a corpus, can we construct a
third vector z representing the meaning of the phrase xy?

The naive approach is to simply use a binary operation which is natural to
vector spaces, such as vector addition, componentwise multiplication, or tensor
product. These approaches each produce somewhat different theories, e.g. ad-
dition and componentwise multiplication can only be applied to vectors in the
same ambient vector space, whereas tensor product can combine vectors from
any two vector spaces and produce a vector in a third, often distinct vector
space.

However, all of these fail to meet even the basic requirements of composi-
tionality in natural languages, in that they are all commutative, whereas natural
language is highly non-commutative. That is to say, x+y = y+x, but “Jack likes
Jill” ̸= “Jill likes Jack”. It is therefore clear that we need a non-commutative
operation to accurately represent compositionality.

Unfortunately, there is no natural non-commutative binary operation on
vector spaces. Some authors have attempted to construct some for this exact
purpose, but these constructions have been complicated and ad hoc. However,
if we combine the structure of vector space distributional semantics with the
Lambek calculus, effectively accounting for the semantics and syntax in the
same model, we will see that a solution to this problem arises very naturally.
This is the task we will take up in the next section.

5 Combining the Models

Recall that pregroups and finite dimensional vector spaces with tensor product,
as monoidal categories, share a common structure known as compact closure.
In the case of pregroups and the Lambek calculus, this structure is essential
to understanding compositionality, by allowing us a means of reducing com-
plex grammatical types to simpler ones. The fact that these categories have
this structure in common allows us, loosely speaking, to combine them into a
single model which maintains the important aspects of each. Explicitly, this
combination proceeds as follows:

Say we are given a corpus X. We can imagine the vector space and pregroup
models for distributional semantics and syntax described above as two different
ways of modeling the corpus, each being used to capture certain salient aspects
of it in a way which allows us to make computations and obtain additional
information which would not be possible from the corpus alone. We visualize
this with a diagram

7

X

P FVect

syntax semantics

for some pregroup P . But we can combine them by forming the product
P × FVect with natural projections onto each component, i.e.

X

P P × FVect FVect

syntax semantics

Since for each pregroup P , both P and FVect are monoidal and compact
closed, it can be shown that these lift to a natural monoidal, compact closed
structure on P ×FVect. That is to say, there is a natural way that P ×FVect
can be made into a compact closed monoidal category, such that, restricted to
each component, these structures agree with the original structures.

For example, the monoidal structure on P × FVect becomes the product
(a, V)∗(b,W) = (ab, V ⊗W), i.e. simply applying the products in P and FVect
componentwise. With this definition, each object (a, V) ∈ P × FVect consists
of a vector space V together with a grammatical type a, and elements of this
object are vectors in V together with a grammatical type, (a, v).

The product on P × FVect induces a product on these elements, namely
(a, v) ∗ (b, w) = (ab, v ⊗ w), which lives in the space (ab, V ⊗ W). Recall that
the product in P is not commutative, since it is built precisely to model syntax,
hence the product described above is also not commutative, i.e. (ab, v ⊗ w) ̸=
(ba, w ⊗ v), even though v ⊗ w = w ⊗ v. In linguistics terms, this expresses
exactly what we want: For strings of words x and y, the composite string xy
does not necessraily have the same meaning as yx. In particular, “Jack likes
Jill” is semantically distinct from “Jill likes Jack”.

This solution is elegant because of its intuitive naturally: The underlying
principle is that the strings xy and yx are distinct in meaning precisely be-
cause xy and yx are grammatically distinct. We can therefore expect that the
difference between the meanings of xy and yx is somehow contained in their
grammatical distinction, in terms of the meanings of x and y individually. This
suggests a connection between syntax and semantics which we might expect.

We now define explicitly the meaning of a string in this model. We will start
with an example to motivate the general definition. Consider the case of the
grammatical sentence “Jack likes Jill”. Using the Lambek calculus, this sentence
has the grammatical reduction n(nrsnl)n → s, as detailed above. Recall that
this is simply a morphism in the pregroup P . If we lift this reduction to P ×
FVect, we get a linear map between vector spaces which respects this reduction.
Explicitly, we get the following:

8

We need to assign vector spaces to each word in the sentence. Say that all
nouns in our corpus live in a vector space denoted N and grammatical sentences
in a vector space denoted S. Then, in order to respect the grammatical reduction
n(nrsnl)n → s, transitive verbs such as “like” must live in the vector space
N ⊗ S ⊗ N . (Recall that N l = Nr = N∗ = N .) Let g : P → P denote
the map n(rrsnl)n → s. Then, with this notation in place, g lifts to a map
f : P × FVect → P × FVect given by

(n(nrsnl)n,N ⊗N ⊗ S ⊗N ⊗N) 7→ (s, S)

such that f restricted to P is g. Recall definition 3: the existence of such
maps, in each component, is part of what it means for these categories to be
compact closed. To each grammatical reduction map, such as g, there exists
some map g′ : FVect → FVect corresponding to it, based on this structure.
We then simple take f = (g, g′).

Generalizing this procedure, for each grammatical reduction, we get a map
on P × FVect corresponding to this reduction. Thus, after applying these
functions, all strings of the same grammatical type, post-reduction, end up in
the same vector space, and can be compared accordingly. In particular, all
grammatical sentences end up in the same vector space.

We now return to the example “Jack likes Jill” to see exactly how this works
in practice. We start by using our existing distributional model to assign vectors
to each word the sentence. The nouns are simple, following the exact procedure
outlined earlier in the paper. We express each as linear combinations of basis
elements {vi} in N :

Jack =
∑
i

aivi

Jill =
∑
j

bjvj

These vectors are each paired with the grammatical type n, for noun. The
verb “likes” lives in the vector space N ⊗ S ⊗N , as explained above, hence has
the form

likes =
∑
i,j,k

cijkvi ⊗ sj ⊗ wk

where {sj} is a basis for S. This vector is paired with the grammatical type
nrsnl. To compute the vector in S for the sentence “Jack likes Jill”, we use the
procedure described above, applying to Jack⊗ likes⊗Jill the function f induced
by the reduction n(nrsnl)n → s. Mathematically, this gives us

9

f(Jack⊗ likes⊗ Jill) =
∑
i,j,k

cijk⟨Jack, vi⟩sj⟨wk, Jill⟩

=
∑
j

∑
i,k

cijk⟨Jack, vi⟩⟨wk, Jill⟩

 sj

This follows from the explicit representation of the reduction maps in FVect
described earlier. The important thing to take away from this is that these
vectors are entirely computable from the vectors associated to each word in the
string, exactly as we would want from a compositional model.

This process guarantees us a well-defined vector in S for every grammatical
sentence, which is computable from the vectors assigned to each of its component
words using any vector space distributional model, using the Lambek calculus.
Likewise, all phrases of grammatical type x will appear in the same vector space
X. We therefore are able to quantify similarity between phrases and sentences
in exactly the same way as we did for individual words above, namely by the
cosine of the angle between their associated vectors. Explicitly, we have the
following definition, which mirrors definition 4:

Definition 5. For two strings of words x, y of the same grammatical type, we
define the degree of similarity d between x and y to be

d =
⟨x, y⟩
|x||y|

= cos θ

where ⟨., .⟩ is the usual inner product, |.| is the usual norm, and θ is the
angle between x and y.

We stipulate that x and y have the same grammatical type because we
cannot compute their inner product if they live in different vector spaces. This is
acceptable, though, because we would generally only be interested in comparing
the semantics of strings of the same grammatical type. There are, however,
possible ways this model could be expanded to remove this destriction, if so
desired, e.g. by embedding two distinct vector spaces in the same ambient
space, e.g. their Cartesian product. But we will not explore these possibilities
here.

6 Applications

It is clear that a working model of distributional compositional semantics could
be very useful for various applications to natural language processing, such
as the way in which existing distributional models have already been applied
successfully to automatic thesaurus building. But it is conceivable that it may
lead to even further applications in less expected ways. We conclude this section

10

with a brief description of one of these potential applications, and describe how
this model might be used to gain quantitative information regarding the relation
between words, phrases, and sentences.

As motivation, say we have a notion of the meanings of the words “love”
and “hate”. Intuitively, the meaning of “like” is somewhere between the two,
and closer to “love”. We may say, for example,

like =
3

4
love +

1

4
hate

We can then use basic vector arithmetic to work with the semantics of strings
containing “like” knowing only information about the semantics of strings con-
taining “like” and “love”. Working backwards, say we have a corpus and an
algorithm based on this model which produces vectors for all strings in the cor-
pus. We can then compute the degree of similarity between “like” and each of
the words “love” and “hate”, respectively, using the above formula. This allows
us to write

like = a ∗ love + b ∗ hate

for some a, b ∈ [0, 1], and experimentally determine exactly what a and b
should be for each corpus. This could in turn give us interesting information
about linguistic cultural differences. In particular, we can expect that for dif-
ferent sets of corpus data, the degrees of similarity between words would also
vary. If we choose corpus data specifically from separate cultures which we
are interested in comparing linguistically, the extent to which this degree varies
from corpus to corpus, as well as the way in which it varies, can help us draw
quantitative conclusions about how word meanings differ across cultures.

7 Experimental Results

In another study, Bob Coecke, Edward Grefenstette, and Mehrnoosh Sadrzadeh
constructed algorithms for two different semantic models based on the approach
outlined in this paper and tested it alongside other algorithms for distributional
semantics which have been constructed to estimate the similarity of meanings
between sentences. Their study used a corpus of about 6 million sentences and
500, 000 unique lemmas from the British National Corpus.

The various models were used to construct vectors for a set of sentences of
similar structure (e.g. “the system met the criterion” vs. “the system visited
the criterion”). A group of native English speaking volunteers were instructed
to rank the sentences according to which were more similar to which. These
rankings were compared to those produced by the algorithms. In all the tests
performed, the models based on the categorical approach in this paper outper-
formed the others. These results can be read in [2].

11

8 Connections to Traditional Compositional Se-
mantics

We conclude this paper by providing some interesting interpretations of the
model constructed in this paper which reveal underlying connections between
it and traditional compositional semantics. First of all, consider the semantics
of a transitive verb. In the introduction to this paper, we explained how in
traditional compositional semantics, transitive verbs are assigned the type e →
(e → t), which expresses (via currying) that they take two nouns and produce
a truth value. In our distributional semantics, we end up with vectors, not
necessarily truth values, but it is easily seen that the same underlying principle
applies.

As described in section 5, the transitive verbs are associated to vectors in
N⊗S⊗N , where N and S are vector spaces assigned to nouns and grammatical
sentences, respectively. According to the distributional model, these vectors are
precisely the meanings of these verbs. By commutativity of the tensor product
(up to isomorphisms), we haveN⊗S⊗N ∼= N⊗N⊗S. There is also a well-known
isomorphism V ∗⊗W ∼= Hom(V,W) which holds for any finite dimensional vector
spaces V and W . Using this, we get

N ⊗N ⊗ S ∼= (N ⊗N)∗ ⊗ S ∼= Hom(N ⊗N,S)

By the universal property of the tensor product, stated in section 2, all maps
N ⊗N → S are associated uniquely to bilinear maps N ×N → S, and then via
currying, we get

N ⊗N ⊗ S ∼= Hom(N ×N,S) ∼= Hom(N,Hom(N,S))

Alternatively, we can bypass the universal property and apply the tensor-
hom adjunction (also stated in section 2) directly:

N ⊗N ⊗ S ∼= Hom(N ⊗N,S) ∼= Hom(N,Hom(N,S))

In either case, we get the following result, which mirrors the case of tradi-
tional compositional semantics: The meaning of a transitive verb is a function
which takes two nouns (a subject and an object) and produces a sentence, i.e.
a vector in S. This interpretation suggests that this model is precisely a gen-
eralization of the traditional model. We can make this explicit. Let S be a
one-dimensional vector space with basis vector {1}. We interpret 1 as “true”
and 0 (the origin) as “false”. In this case, the verb “likes” takes the form

likes =
∑
i,j

vi ⊗ sij ⊗ wj

where sij = 1 if and only if vi likes wj , and 0 otherwise. Now, let the vectors
{vi} and {wj} in the above sum range over all nouns in our corpus, i.e. we
let all nouns be a basis for the vector space N . We can do this without any
mathematical consequences because the corpus is necessarily finite. Also, note

12

that, by basic properties of the inner product, if x and y are basis elements,
then ⟨x, y⟩ = 1 if x = y and 0 otherwise. We then compute

f(Jack⊗ likes⊗ Jill) =
∑
i,j

⟨Jack, vi⟩sij⟨wj , Jill⟩

= sJack,Jill =

{
1, Jack likes Jill

0, otherwise

Therefore, we achieve the exact same result as we would in the case of
traditional compositional semantics, namely that the meaning of “Jack likes
Jill” is the truth value of the sentence, and the meaning of “likes” is a function
which assigns to two nouns, in a given order, a truth value corresponding to the
truth of the resulting sentence.

Since functions are uniquely determined by their input and output, we see
that in the case where S is a one-dimensional vector space like above, we recover
the traditional model exactly. In this way, the distributional compositional
model constructed in this paper is a proper generalization of the traditional
one, which allows us the freedom to alter the vector space in which grammatical
sentences live (namely by changing the basis) according to what information we
would like to extract from the sentence.

9 References

1. Coecke, Bob; Clark, Stephen; Sadrzadeh, Mehrnoosh: Mathematical Foun-
dations for a Compositional Distributional Model of Meaning

2. Coecke, Bob; Grefenstette, Edward; Sadrzadeh, Mehrnoosh: Lambek vs.
Lambek: Functorial Vector Space Semantics and String Diagrams for
Lambek Calculus

13

