Extending n-sequences

Christian Hokaj and Kendra Plante

April 2, 2024

Definition

We call a polynomial *hyperbolic* if it has only real zeroes.

Definition

We call a polynomial *hyperbolic* if it has only real zeroes.

Definition

Let *CMS* denote the set of real sequences $\{\gamma_k\}_{k=0}^{\infty}$ with the following property: For any $n \in \mathbb{N}$, $\sum_{k=0}^{n} \gamma_k a_k x^k$ is hyperbolic whenever $\sum_{k=0}^{n} a_k x^k$ is hyperbolic.

Definition

We call a polynomial *hyperbolic* if it has only real zeroes.

Definition

Let *CMS* denote the set of real sequences $\{\gamma_k\}_{k=0}^{\infty}$ with the following property: For any $n \in \mathbb{N}$, $\sum_{k=0}^{n} \gamma_k a_k x^k$ is hyperbolic whenever $\sum_{k=0}^{n} a_k x^k$ is hyperbolic.

Definition

Let CMS_n denote the set of real sequences of n+1 terms $\{\gamma_k\}_{k=0}^n$ with the following property: For any $m \leq n$, $\sum_{k=0}^m \gamma_k a_k x^k$ is hyperbolic whenever $\sum_{k=0}^m a_k x^k$ is hyperbolic.

Proposition (Pólya and Schur)

A sequence of the form $\{\ldots, \gamma_n, 0, \gamma_{n+2}, \ldots\}$, where $\gamma_n \neq 0$ and $\gamma_{n+2} \neq 0$ is not a classical multiplier sequence.

Proposition (Pólya and Schur)

A sequence of the form $\{\ldots, \gamma_n, 0, \gamma_{n+2}, \ldots\}$, where $\gamma_n \neq 0$ and $\gamma_{n+2} \neq 0$ is not a classical multiplier sequence.

Corollary

If $\{\gamma_k\}_{k=0}^n$ is an n-sequence and $\gamma_n = 0$, then $\{\gamma_k\}_{k=0}^n \cup \{a\}$ for $a \neq 0$ is not an (n+1)-sequence.

Proposition (Pólya and Schur)

A sequence of the form $\{\ldots, \gamma_n, 0, \gamma_{n+2}, \ldots\}$, where $\gamma_n \neq 0$ and $\gamma_{n+2} \neq 0$ is not a classical multiplier sequence.

Corollary

If $\{\gamma_k\}_{k=0}^n$ is an n-sequence and $\gamma_n = 0$, then $\{\gamma_k\}_{k=0}^n \cup \{a\}$ for $a \neq 0$ is not an (n+1)-sequence.

Proposition (Pólya and Schur)

A polynomial of the form $f(x) = \sum_{k=0}^{m} a_k x^k + \sum_{k=m+3}^{n} a_k x^k$ is not hyperbolic.

Definition

Let \mathcal{H}_n denote the set of polynomials over \mathbb{R} of degree at most n whose roots are all real and of the same sign.

Definition

Let \mathcal{H}_n denote the set of polynomials over \mathbb{R} of degree at most n whose roots are all real and of the same sign.

Theorem (Pólya-Schur)

If $\{\gamma_k\}_{k=0}^\infty \in \mathbb{R}^\omega$, then $\{\gamma_k\}_{k=0}^\infty \in \mathit{CMS}$ if and only if

$$g_n(x) = \sum_{k=0}^n \binom{n}{k} \gamma_k x^k \in \mathcal{H}_n$$

for all $n \in \mathbb{N}$.

Corollary

If
$$\{\gamma_k\}_{k=0}^n \in \mathbb{R}^{n+1}$$
, then $\{\gamma_k\}_{k=0}^n \in \mathit{CMS}_n$ if and only if

$$g_n(x) = \sum_{k=0}^n \binom{n}{k} \gamma_k x^k \in \mathcal{H}_n$$

Corollary

If $\{\gamma_k\}_{k=0}^n \in \mathbb{R}^{n+1}$, then $\{\gamma_k\}_{k=0}^n \in \mathit{CMS}_n$ if and only if

$$g_n(x) = \sum_{k=0}^n \binom{n}{k} \gamma_k x^k \in \mathcal{H}_n$$

We call g_n the *n*-th Jensen polynomial associated to $\{\gamma_k\}_{k=0}^n$ and write $g_n \sim \{\gamma_k\}_{k=0}^n$.

Topological Equivalence

Proposition

Let

$$\phi\left(\sum_{k=0}^{n} \binom{n}{k} \gamma_k x^k\right) = \{\gamma_k\}_{k=0}^{n}$$

Then $\phi: \mathcal{H}_n \to CMS_n$ is a homeomorphism for each $n \in \mathbb{N}$.

Topological Equivalence

Proposition

Let

$$\phi\left(\sum_{k=0}^{n} \binom{n}{k} \gamma_k x^k\right) = \{\gamma_k\}_{k=0}^{n}$$

Then $\phi: \mathcal{H}_n \to CMS_n$ is a homeomorphism for each $n \in \mathbb{N}$.

Remark

For each $n \in \mathbb{N}$, we interpret \mathcal{H}_n as a topological subspace of $\mathbb{R}_n[x]$ with the compact convergence topology. Similarly, we interpret CMS_n as a topological subspace of \mathbb{R}^{n+1} with the Euclidean metric.

How is *CMS* related to each *CMS*_n? How is *CMS*_n related to *CMS*_m for $n \neq m$?

How is *CMS* related to each *CMS*_n? How is *CMS*_n related to *CMS*_m for $n \neq m$?

Definition

Let $\{\gamma_0, \gamma_1, \dots, \gamma_n\} \in CMS_n$ and $\{\gamma_0, \gamma_1, \dots, \gamma_n, \dots, \gamma_m\} \in CMS_m$ for m > n. Then we say that $\{\gamma_k\}_{k=0}^m$ is an extension of $\{\gamma_k\}_{k=0}^n$.

How is *CMS* related to each *CMS*_n? How is *CMS*_n related to *CMS*_m for $n \neq m$?

Definition

Let $\{\gamma_0, \gamma_1, \dots, \gamma_n\} \in CMS_n$ and $\{\gamma_0, \gamma_1, \dots, \gamma_n, \dots, \gamma_m\} \in CMS_m$ for m > n. Then we say that $\{\gamma_k\}_{k=0}^m$ is an extension of $\{\gamma_k\}_{k=0}^n$.

Note that, for any *m*-sequence $\{\gamma_k\}_{k=0}^m$, and any n < m, $\{\gamma_k\}_{k=0}^n$ is an *n*-sequence.

How is *CMS* related to each *CMS*_n? How is *CMS*_n related to *CMS*_m for $n \neq m$?

Definition

Let $\{\gamma_0, \gamma_1, \dots, \gamma_n\} \in CMS_n$ and $\{\gamma_0, \gamma_1, \dots, \gamma_n, \dots, \gamma_m\} \in CMS_m$ for m > n. Then we say that $\{\gamma_k\}_{k=0}^m$ is an *extension* of $\{\gamma_k\}_{k=0}^n$.

Note that, for any *m*-sequence $\{\gamma_k\}_{k=0}^m$, and any n < m, $\{\gamma_k\}_{k=0}^n$ is an *n*-sequence.

Question

For any m > n, can every n-sequence be extended to an m-sequence? If not, can we characterize which ones can be extended, and how?

Theorem (Craven and Csordas)

The following hold:

Theorem (Craven and Csordas)

The following hold:

• For each integer $n \ge 3$, there exists an n-sequence which cannot be extended to an (n+1)-sequence.

Theorem (Craven and Csordas)

The following hold:

- For each integer $n \ge 3$, there exists an n-sequence which cannot be extended to an (n + 1)-sequence.
- If $\{\gamma_k\}_{k=0}^n$ is a sequence of real numbers with $\gamma_0=1$ and $\gamma_{k-1}^2 \geq 4(1-1/k)\gamma_k\gamma_{k-2}$ for $k\in\{2,3,\ldots,n\}$, then $\{\gamma_k\}_{k=0}^n$ is an n-sequence which is extendable to CMS.

Theorem (Craven and Csordas)

The following hold:

- For each integer $n \ge 3$, there exists an n-sequence which cannot be extended to an (n + 1)-sequence.
- If $\{\gamma_k\}_{k=0}^n$ is a sequence of real numbers with $\gamma_0=1$ and $\gamma_{k-1}^2 \geq 4(1-1/k)\gamma_k\gamma_{k-2}$ for $k\in\{2,3,\ldots,n\}$, then $\{\gamma_k\}_{k=0}^n$ is an n-sequence which is extendable to CMS.
- If g_n is a Jensen polynomial of degree n with two consecutive non-simple zeros, then the associated n-sequence cannot be extended to an (n+1)-sequence.

Characterization of Boundary and Interior

Theorem (H-P)

For each $n \in \mathbb{N}_{n \geq 2}$, $p \in \mathcal{H}_n$ is a boundary point if and only if p(0) = 0 or p has a zero of multiplicity $m \geq 2$.

Characterization of Boundary and Interior

Theorem (H-P)

For each $n \in \mathbb{N}_{n \geq 2}$, $p \in \mathcal{H}_n$ is a boundary point if and only if p(0) = 0 or p has a zero of multiplicity $m \geq 2$.

Corollary

 \mathcal{H}_n has nonempty interior in $\mathbb{R}_n[x]$ for all $n \in \mathbb{N}$. Equivalently, CMS_n has nonempty interior in \mathbb{R}^{n+1} for all $n \in \mathbb{N}$.

Characterization of Boundary and Interior

Theorem (H-P)

For each $n \in \mathbb{N}_{n \geq 2}$, $p \in \mathcal{H}_n$ is a boundary point if and only if p(0) = 0 or p has a zero of multiplicity $m \geq 2$.

Corollary

 \mathcal{H}_n has nonempty interior in $\mathbb{R}_n[x]$ for all $n \in \mathbb{N}$. Equivalently, CMS_n has nonempty interior in \mathbb{R}^{n+1} for all $n \in \mathbb{N}$.

Example

- $(x+1)^n \sim \{1,1,\dots\}$ is a boundary point of \mathcal{H}_n and CMS_n .
- $x + 1 \sim \{1, \frac{1}{n}, 0, 0, \dots\}$ is an interior point of \mathcal{H}_n and CMS_n .

$$(x+1)^n = \sum_{k=0}^n \binom{n}{k} x^k = \sum_{k=0}^{n+1} \binom{n+1}{k} \frac{n+1-k}{n+1} x^k \sim \left\{ \frac{n+1-k}{n+1} \right\}_{k=0}^{n+1}$$

$$(x+1)^n = \sum_{k=0}^n \binom{n}{k} x^k = \sum_{k=0}^{n+1} \binom{n+1}{k} \frac{n+1-k}{n+1} x^k \sim \left\{ \frac{n+1-k}{n+1} \right\}_{k=0}^{n+1}$$

• Thus,
$$\left\{ \frac{n+1-k}{n+1} \right\}_{k=0}^{n+1} \in \mathit{CMS}_{n+1}$$

$$(x+1)^n = \sum_{k=0}^n \binom{n}{k} x^k = \sum_{k=0}^{n+1} \binom{n+1}{k} \frac{n+1-k}{n+1} x^k \sim \left\{ \frac{n+1-k}{n+1} \right\}_{k=0}^{n+1}$$

- Thus, $\left\{ \frac{n+1-k}{n+1} \right\}_{k=0}^{n+1} \in \mathit{CMS}_{n+1}$
- Is $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \cup \{0\} \in CMS_{n+2}$?

Is
$$\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \cup \{0\} \in CMS_{n+2}$$
?

Is $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \cup \{0\} \in CMS_{n+2}$? We compute the (n+2)th Jensen polynomial:

Is $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \cup \{0\} \in CMS_{n+2}$? We compute the (n+2)th Jensen polynomial:

$$g(x) = \sum_{k=0}^{n} {n+2 \choose k} \frac{n+1-k}{n+1} x^{k}$$

Is $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1}\cup\{0\}\in CMS_{n+2}$? We compute the (n+2)th Jensen polynomial:

$$g(x) = \sum_{k=0}^{n} {n+2 \choose k} \frac{n+1-k}{n+1} x^{k} = \frac{n+2}{x^{n+2}} \int_{0}^{x} t(t+1)^{n} dt$$

Is $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \cup \{0\} \in CMS_{n+2}$? We compute the (n+2)th Jensen polynomial:

$$g(x) = \sum_{k=0}^{n} {n+2 \choose k} \frac{n+1-k}{n+1} x^{k} = \frac{n+2}{x^{n+2}} \int_{0}^{x} t(t+1)^{n} dt$$

• If *n* is odd, *g* has no real zeroes. If *n* is even, then *g* has exactly one real zero.

Is $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1}\cup\{0\}\in CMS_{n+2}$? We compute the (n+2)th Jensen polynomial:

$$g(x) = \sum_{k=0}^{n} {n+2 \choose k} \frac{n+1-k}{n+1} x^{k} = \frac{n+2}{x^{n+2}} \int_{0}^{x} t(t+1)^{n} dt$$

- If *n* is odd, *g* has no real zeroes. If *n* is even, then *g* has exactly one real zero.
- Therefore, $g \notin \mathcal{H}_{n+2}$, which implies $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \cup \{0\} \notin \mathit{CMS}_{n+2}$

Is $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \cup \{0\} \in CMS_{n+2}$? We compute the (n+2)th Jensen polynomial:

$$g(x) = \sum_{k=0}^{n} {n+2 \choose k} \frac{n+1-k}{n+1} x^{k} = \frac{n+2}{x^{n+2}} \int_{0}^{x} t(t+1)^{n} dt$$

- If *n* is odd, *g* has no real zeroes. If *n* is even, then *g* has exactly one real zero.
- Therefore, $g \notin \mathcal{H}_{n+2}$, which implies $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \cup \{0\} \notin \mathit{CMS}_{n+2}$
- Thus, $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1}$ cannot be extended.

Further Results

• The *n*-sequence associated with x^m for any $m \le n$ can always be extended to CMS.

Further Results

- The *n*-sequence associated with x^m for any $m \le n$ can always be extended to CMS.
- There are some interior points which can be extended, e.g. $(x+1)(x+2) \in \mathcal{H}_3$, and some which cannot, e.g. $(x+1)(x+2)(x+3) \in \mathcal{H}_4$.

Further Results

- The *n*-sequence associated with x^m for any $m \le n$ can always be extended to CMS.
- There are some interior points which can be extended, e.g. $(x+1)(x+2) \in \mathcal{H}_3$, and some which cannot, e.g. $(x+1)(x+2)(x+3) \in \mathcal{H}_4$.
- With a similar argument, we can show that, for any m < n and $a \ne 0$, the n-sequence associated with $(x + a)^m$ cannot be extended to an (n + 1)-sequence.

Reverse

Definition

If p is a polynomial of degree n, then we define the *reverse* of p to be the polynomial $p^*(x) = x^n p(1/x)$.

Reverse

Definition

If p is a polynomial of degree n, then we define the *reverse* of p to be the polynomial $p^*(x) = x^n p(1/x)$.

Example

Let
$$f(x) = 2x^5 + 7x^4 + 9x^2 - 3x + 1$$
. Then $f^*(x) = x^5 - 3x^4 + 9x^3 + 7x + 2$.

Reverse

Definition

If p is a polynomial of degree n, then we define the *reverse* of p to be the polynomial $p^*(x) = x^n p(1/x)$.

Example

Let
$$f(x) = 2x^5 + 7x^4 + 9x^2 - 3x + 1$$
. Then $f^*(x) = x^5 - 3x^4 + 9x^3 + 7x + 2$.

Proposition

Reverse preserves hyperbolicity of polynomials and the sign and multiplicity of their nonzero zeros.

Integral Representation

Proposition (Craven and Csordas)

If g_n and g_{n+1} are the Jensen polynomials associated with $\{\gamma_k\}_{k=0}^n$ and $\{\gamma_k\}_{k=0}^{n+1}$, respectively, then

$$g_{n+1}^{*'}(x) = (n+1)g_n^*(x)$$

Integral Representation

Proposition (Craven and Csordas)

If g_n and g_{n+1} are the Jensen polynomials associated with $\{\gamma_k\}_{k=0}^n$ and $\{\gamma_k\}_{k=0}^{n+1}$, respectively, then

$$g_{n+1}^{*'}(x) = (n+1)g_n^*(x)$$

Corollary

If g_n is a Jensen polynomial, then the associated n-sequence $\{\gamma_k\}_{k=0}^n$ is extendable to CMS_{n+1} if and only if there exists an $a \in \mathbb{R}$ such that

$$f(x) = (n+1) \int_a^x g_n^*(t) dt \in \mathcal{H}_{n+1}$$

In this case, $\{\gamma_k\}_{k=0}^n \cup \{-G(a)\}$ is an (n+1)-sequence, where G is an antiderivative of f with G(0)=0.

New Results

Theorem (H-P)

Suppose $g_n(x) = (x+a)^m q(x)$, where $\deg q < n$, $a \ne 0$, and $m \ge 2$. Let $\{a_k\}$ denote the zeros p and assume that $|a| \ge |a_k|$ or $|a| \le |a_k|$ for all $1 \le k \le \deg p$. Then $g_{n+1} \notin \mathcal{H}_{n+1}$.

New Results

Theorem (H-P)

Suppose $g_n(x) = (x+a)^m q(x)$, where $\deg q < n$, $a \neq 0$, and $m \geq 2$. Let $\{a_k\}$ denote the zeros p and assume that $|a| \geq |a_k|$ or $|a| \leq |a_k|$ for all $1 \leq k \leq \deg p$. Then $g_{n+1} \notin \mathcal{H}_{n+1}$.

Theorem (H-P; Necessary Condition for Extendability)

Suppose
$$g_n(x)=(x+a)^2q(x)$$
, where $a\neq 0$, $q\in \mathcal{H}_n$, and $\deg g_n=m< n$. If $g_{n+1}\in \mathcal{H}_{n+1}$, then $g_{n+1}(-a)=0$

New Results

Theorem (H-P)

Suppose $g_n(x) = (x+a)^m q(x)$, where $\deg q < n$, $a \ne 0$, and $m \ge 2$. Let $\{a_k\}$ denote the zeros p and assume that $|a| \ge |a_k|$ or $|a| \le |a_k|$ for all $1 \le k \le \deg p$. Then $g_{n+1} \notin \mathcal{H}_{n+1}$.

Theorem (H-P; Necessary Condition for Extendability)

Suppose $g_n(x)=(x+a)^2q(x)$, where $a\neq 0$, $q\in \mathcal{H}_n$, and $\deg g_n=m< n$. If $g_{n+1}\in \mathcal{H}_{n+1}$, then $g_{n+1}(-a)=0$

Theorem (H-P; Sufficient Condition for Extendability)

Suppose $g_n(x) = (x + a)^j q(x)$, where $j \ge 2$, $a \ne 0$, $q \in \mathcal{H}_n$, and $\deg g_n = m < n$. If $g_{n+1}(-a) = 0$ and $m - j \le 2$, then $g_{n+1} \in \mathcal{H}_{n+1}$.

Theorem

Suppose $g_n(x)=(x+a)^2q(x)$ where $a\neq 0, q\in \mathcal{H}_n$, and $\deg g_n=m< n$. Then if $g_{n+1}(-a)=0, \ g_{n+1}\in \mathcal{H}_n$.

Theorem

Suppose
$$g_n(x) = (x+a)^2 q(x)$$
 where $a \neq 0, q \in \mathcal{H}_n$, and $\deg g_n = m < n$.
Then if $g_{n+1}(-a) = 0$, $g_{n+1} \in \mathcal{H}_n$.

Proof.

Let s=1/a. By the integral representation and Taylor's theorem,

$$g_{n+1}^*(x) = (n+1) \int_0^x g_n^*(t) dt = \frac{n+1}{s^2} \int_0^x t^{m-n} (t+s)^2 q^*(t) dt$$

Theorem

Suppose $g_n(x)=(x+a)^2q(x)$ where $a\neq 0, q\in \mathcal{H}_n$, and $\deg g_n=m< n$. Then if $g_{n+1}(-a)=0, g_{n+1}\in \mathcal{H}_n$.

Proof.

Let s = 1/a. By the integral representation and Taylor's theorem,

$$g_{n+1}^*(x) = (n+1) \int_0^x g_n^*(t) dt = \frac{n+1}{s^2} \int_0^x t^{m-n} (t+s)^2 q^*(t) dt$$

$$g_{n+1}^*(x) = g_{n+1}^*(-s) + \sum_{k=3}^{n+1} \frac{g_{n+1}^{*(k)}(-s)}{k!} (x+s)^k$$

Theorem

Suppose $g_n(x) = (x+a)^2 q(x)$ where $a \neq 0, q \in \mathcal{H}_n$, and $\deg g_n = m < n$. Then if $g_{n+1}(-a) = 0$, $g_{n+1} \in \mathcal{H}_n$.

Proof.

Let s = 1/a. By the integral representation and Taylor's theorem,

$$g_{n+1}^*(x) = (n+1) \int_0^x g_n^*(t) dt = \frac{n+1}{s^2} \int_0^x t^{m-n} (t+s)^2 q^*(t) dt$$

$$g_{n+1}^*(x) = g_{n+1}^*(-s) + \sum_{k=3}^{n+1} \frac{g_{n+1}^{*(k)}(-s)}{k!} (x+s)^k$$

Thus if $g_{n+1}^*(-s) \neq 0$, then g_{n+1}^* is not hyperbolic, which implies $g_{n+1} \neq \mathcal{H}_n$.

Theorem

Suppose $g_n(x)=(x+a)^jq(x)$, where $j\geq 2, a\neq 0, q\in \mathcal{H}_n$, and $\deg g_n=m< n$. If $g_{n+1}(-a)=0$ and $m-j\leq 2$, then $g_{n+1}\in \mathcal{H}_n$.

Theorem

Suppose
$$g_n(x) = (x + a)^j q(x)$$
, where $j \ge 2$, $a \ne 0$, $q \in \mathcal{H}_n$, and $\deg g_n = m < n$. If $g_{n+1}(-a) = 0$ and $m - j \le 2$, then $g_{n+1} \in \mathcal{H}_n$.

Proof.

Let s = 1/a. By Taylor's theorem,

$$g_{n+1}^*(x) = (x+s)^{j+1} \sum_{k=j+1}^{n+1} \frac{g_{n+1}^{*(k)}(-s)}{k!} x^{k-j-1}$$

Theorem

Suppose
$$g_n(x) = (x+a)^j q(x)$$
, where $j \ge 2$, $a \ne 0$, $q \in \mathcal{H}_n$, and $\deg g_n = m < n$. If $g_{n+1}(-a) = 0$ and $m-j \le 2$, then $g_{n+1} \in \mathcal{H}_n$.

Proof.

Let s = 1/a. By Taylor's theorem,

$$g_{n+1}^*(x) = (x+s)^{j+1} \sum_{k=j+1}^{n+1} \frac{g_{n+1}^{*(k)}(-s)}{k!} x^{k-j-1}$$

$$g_{n+1}^*(x) = x^{m-n+1} \sum_{k=m-n+1}^{n+1} \frac{g_{n+1}^{*(k)}(0)}{k!} x^{k-j-1}$$

Theorem

Suppose
$$g_n(x) = (x + a)^j q(x)$$
, where $j \ge 2$, $a \ne 0$, $q \in \mathcal{H}_n$, and $\deg g_n = m < n$. If $g_{n+1}(-a) = 0$ and $m - j \le 2$, then $g_{n+1} \in \mathcal{H}_n$.

Proof.

Let s = 1/a. By Taylor's theorem,

$$g_{n+1}^*(x) = (x+s)^{j+1} \sum_{k=j+1}^{n+1} \frac{g_{n+1}^{*(k)}(-s)}{k!} x^{k-j-1}$$

$$g_{n+1}^*(x) = x^{m-n+1} \sum_{k=m-n+1}^{n+1} \frac{g_{n+1}^{*(k)}(0)}{k!} x^{k-j-1}$$

Hence, $g_{n+1}^*(x)$ has at most (n+1)-(j+1)-(n-m+1)=(m-j)-1 non-real roots. The condition $m-j \le 2$ ensures that $g_{n+1}^*(x)$ must have all real roots.

In the sufficient condition, can we do any better than $m-j \leq 2$? The following result shows that we cannot:

In the sufficient condition, can we do any better than $m-j \leq 2$? The following result shows that we cannot:

Proposition (H-P)

There exists a function $g_n(x)=(x+a)^jq(x)$, where $j\geq 2, a\neq 0, q\in \mathcal{H}_n$, and $\deg g_n=m< n$, such that $g_{n+1}(-a)=0$, but $g_{n+1}\notin \mathcal{H}_{n+1}$.

In the sufficient condition, can we do any better than $m-j \leq 2$? The following result shows that we cannot:

Proposition (H-P)

There exists a function $g_n(x)=(x+a)^jq(x)$, where $j\geq 2, a\neq 0, q\in \mathcal{H}_n$, and $\deg g_n=m< n$, such that $g_{n+1}(-a)=0$, but $g_{n+1}\notin \mathcal{H}_{n+1}$.

Proof.

If
$$g_6(x)=\left(\frac{1}{5}x+1\right)\left(\frac{15}{21}x+1\right)\left(\frac{1}{2}x+1\right)(x+1)^2$$
, then $g_7(x)=\frac{1}{60}(x+1)^3(15x^2+59x+60)$. The quadratic term is irreducible over \mathbb{R} , hence $g_7\notin\mathcal{H}_7$.

In the sufficient condition, can we do any better than $m-j \leq 2$? The following result shows that we cannot:

Proposition (H-P)

There exists a function $g_n(x)=(x+a)^jq(x)$, where $j\geq 2, a\neq 0, q\in \mathcal{H}_n$, and $\deg g_n=m< n$, such that $g_{n+1}(-a)=0$, but $g_{n+1}\notin \mathcal{H}_{n+1}$.

Proof.

If
$$g_6(x)=\left(\frac{1}{5}x+1\right)\left(\frac{15}{21}x+1\right)\left(\frac{1}{2}x+1\right)(x+1)^2$$
, then $g_7(x)=\frac{1}{60}(x+1)^3(15x^2+59x+60)$. The quadratic term is irreducible over \mathbb{R} , hence $g_7\notin\mathcal{H}_7$.

Note that for the example given in the proof, j=2 and m=5, so m-j=3.

Further Research

The previous result shows that the necessary condition is not sufficient.

Further Research

The previous result shows that the necessary condition is not sufficient.

Problem

What is a necessary and sufficient condition for extendability of n-sequences which end in 0?

Further Research

The previous result shows that the necessary condition is not sufficient.

Problem

What is a necessary and sufficient condition for extendability of n-sequences which end in 0?

Problem

Under what conditions will an n-sequence of nonzero terms be non-extendable to an (n + 1)-sequence?

Acknowledgments

We would like to thank:

- The California State University, Fresno and the National Science Foundation for their financial support (NSF Grant #DMS-1460151)
- The California State University, Fresno Mathematics REU program, and
- Our mentor, Dr. Forgács for his support.

THANK YOU!