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Definition

Let CMS,, denote the set of real sequences of n+ 1 terms {y,};_, with
the following property: For any m < n, > ;" 4 yearx is hyperbolic
whenever » ;7 o akx* is hyperbolic.
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Proposition (Pdlya and Schur)

A polynomial of the form f(x) = "1 akx* 4+ >4 _ .53 akx* is not
hyperbolic.
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Definition
Let H, denote the set of polynomials over R of degree at most n whose
roots are all real and of the same sign.

Theorem (Pélya-Schur)
If {7} € R, then {v}32, € CMS if and only if

gn(x) = Zn: (Z)’ykxk € Hp

k=0
for all n € N.
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Corollary
If {vi}i_o € R™2, then {vi}_o € CMS, if and only if

gn(x) = z": <Z>’ykxk €M,

k=0

We call g, the n-th Jensen polynomial associated to {vx}}_, and write
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Proposition
Let
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Then ¢ : H, — CMS,, is a homeomorphism for each n € N.

Remark

For each n € N, we interpret H, as a topological subspace of R,[x]| with
the compact convergence topology. Similarly, we interpret CMS,, as a
topological subspace of R"™! with the Euclidean metric.




Main Question

How is CMS related to each CMS,? How is CMS,, related to CMS,,, for
n# m?



Main Question

How is CMS related to each CMS,? How is CMS,, related to CMS,,, for
n# m?

Definition

Let {70,71,---,7n} € CMS, and {Y0,71, -, Yns - - s Ym} € CMSp, for
m > n. Then we say that {vx}]_, is an extension of {7, };_.




Main Question

How is CMS related to each CMS,? How is CMS,, related to CMS,,, for
n# m?

Definition

Let {70,71,---,7n} € CMS, and {Y0,71, -, Yns - - s Ym} € CMSp, for
m > n. Then we say that {vx}]_, is an extension of {7, };_.

Note that, for any m-sequence {vx}}_,, and any n < m, {y}}_, is an
n-sequence.



Main Question

How is CMS related to each CMS,? How is CMS,, related to CMS,,, for
n# m?

Definition

Let {70,71,---,7n} € CMS, and {Y0,71, -, Yns - - s Ym} € CMSp, for
m > n. Then we say that {vx}]_, is an extension of {7, };_.

Note that, for any m-sequence {vx}}_,, and any n < m, {y}}_, is an
n-sequence.

Question
For any m > n, can every n-sequence be extended to an m-sequence? If
not, can we characterize which ones can be extended, and how?
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Known Results

Theorem (Craven and Csordas)
The following hold:
@ For each integer n > 3, there exists an n-sequence which cannot be
extended to an (n + 1)-sequence.
o If{v}}_o is a sequence of real numbers with vo =1 and
Y2 1 > 4(1 — 1/k)ykyk—2 for k € {2,3,...,n}, then {vk}]_, is an
n-sequence which is extendable to CMS.
o If g, is a Jensen polynomial of degree n with two consecutive
non-simple zeros, then the associated n-sequence cannot be extended
to an (n+ 1)-sequence.
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Characterization of Boundary and Interior

Theorem (H-P)

For each n € Np>o, p € H, is a boundary point if and only if p(0) =0 or
p has a zero of multiplicity m > 2.

Corollary

Hn has nonempty interior in R,[x]| for all n € N. Equivalently, CMS,, has
nonempty interior in R for all n € N.

Example

o (x+1)"~{1,1,...} is a boundary point of #, and CMS,,.
o x+1~{1, %,0,0, ...} is an interior point of H, and CMS,,.
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n n+1 n+1
n n+1\n+1-—k n+1—k
1":§ k:E: SN, SU LS
e+ 1) (k)x ( k > nt1l { nt1 }

k=0 k=0 k=0

_ n+1
@ Thus, {"ﬁilk o € CMSpiq

o Is {1k {0} € CMS,.0?
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Constructing n-sequences without Extensions

Is {”t_lﬁk ::é U{0} € CMS,4+27 We compute the (n+ 2)th Jensen

polynomial:

n
n+2\n+1—k , n+2 [*
g0 =3 (") T = 1 ety
k=0

@ If nis odd, g has no real zeroes. If n is even, then g has exactly one
real zero.
T —_kn+l
o Therefore, g ¢ Hp12, which implies {"Jgilk Z:o U {0} ¢ CMS,12

_ 1
@ Thus, {”Jg}rlk}ZiO cannot be extended.
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N
Further Results

@ The n-sequence associated with x™ for any m < n can always be
extended to CMS.

@ There are some interior points which can be extended, e.g.
(x 4+ 1)(x + 2) € H3, and some which cannot, e.g.
(x +1)(x +2)(x +3) € Ha.

@ With a similar argument, we can show that, for any m < n and a # 0,
the n-sequence associated with (x + a)™ cannot be extended to an
(n + 1)-sequence.
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Reverse

Definition
If p is a polynomial of degree n, then we define the reverse of p to be the
polynomial p*(x) = x"p(1/x).

Example

Let f(x) = 2x° + 7x* + 9x? — 3x + 1. Then
F*(x) = x5 = 3x* + 9x3 + 7x + 2.

Proposition

Reverse preserves hyperbolicity of polynomials and the sign and
multiplicity of their nonzero zeros.
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Integral Representation

Proposition (Craven and Csordas)

If g2 and gny1 are the Jensen polynomials associated with {yx}]_, and
{7k }7ts, respectively, then

grr1(x) = (n+1)gs ()

Corollary

If g, is a Jensen polynomial, then the associated n-sequence {~i}}_q is
extendable to CMS,, .1 if and only if there exists an a € R such that

700 =(n+1) [ gi(e)de € Mo

In this case, {y};_oU{—G(a)} is an (n+ 1)-sequence, where G is an
antiderivative of f with G(0) = 0.
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Suppose g,(x) = (x + a)?q(x), where a # 0, q € H,, and
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Theorem (H-P; Sufficient Condition for Extendability)

Suppose gn(x) = (x + aYq(x), where j > 2, a#0, g € H,, and
deggn=m< n. If goy1(—a) =0 and m— j <2, then gh+1 € Hpt1-
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A Necessary Condition for Extendability

Theorem

Suppose g,(x) = (x + a)?q(x) where a # 0,q € H,, and degg, = m < n.
Then if go11(—a) =0, gnt1 € Hn -

Proof.

Let s = 1/a. By the integral representation and Taylor's theorem,

1
+ tm_”(t—i- s)2q*(t)dt
0

gia(x) = (n+1) / g (t)dt =

0

n+1
* g 1
gn+1( ) gn+1 + Z n+ X + S)k

Thus if gx. 1(—s) # 0, then g, is not hyperbolic, which implies
8nt+1 # Hn. L]
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Suppose gn(x) = (x + aYq(x), where j >2,a#0,q € H,, and
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Theorem

Suppose gn(x) = (x + aYq(x), where j >2,a#0,q € H,, and
deggn=m < n. If goy1(—a) =0 and m—j < 2, then go+1 € Hp.

Proof.
Let s = 1/a. By Taylor's theorem,
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k=j+1 '
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A Sufficient Condition for Extendability

Theorem

Suppose gn(x) = (x + aYq(x), where j >2,a#0,q € H,, and
deggn=m < n. If goy1(—a) =0 and m—j < 2, then go+1 € Hp.

Proof.
Let s = 1/a. By Taylor's theorem,

nt+1l x(k)

* i g 1(_5) —j—
grn(x) = (ot syt Y Bk
k=j+1
* — 1 —
gra(x) = X" Z n+k] o
k=m—n+1

Hence, gy, ;(x) hasat most (n+1)—(j+1)—(n—m+1)=(m—j)—1
non-real roots. The condition m — j < 2 ensures that g, ;(x) must have
all real roots.
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following result shows that we cannot:

Proposition (H-P)

There exists a function g,(x) =

and deg g, = m < n, such that gn+1(—

(x 4+ a)Yq(x), where j >2,a#0,q € Hp,
a) =0, but gny1 & Hny1.

Proof.

If g(,(X)
g7(x) =
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Counterexample

In the sufficient condition, can we do any better than m — j < 27 The
following result shows that we cannot:

Proposition (H-P)

There exists a function g,(x) = (x + aY q(x), where j > 2,a #0,q € Hn,
and deg g, = m < n, such that g,11(—a) =0, but go11 & Hnt1.

Proof.

|fg6()=(x+1)( X+1)( 1)(x—|—1)2,then
gr(x) = &(x+1)°3 (15X + 59x 4 60). The quadratic term is irreducible
over R, hence g7 ¢ Hs.

O

v

Note that for the example given in the proof, j =2 and m =5, so
m—j=3.
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Further Research

The previous result shows that the necessary condition is not sufficient.

Problem

What is a necessary and sufficient condition for extendability of
n-sequences which end in 07

Problem

Under what conditions will an n-sequence of nonzero terms be
non-extendable to an (n + 1)-sequence?
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