Extending n-sequences

Christian Hokaj and Kendra Plante

April 2, 2024

Classical Multiplier Sequences

Definition

We call a polynomial hyperbolic if it has only real zeroes.

Classical Multiplier Sequences

Definition

We call a polynomial hyperbolic if it has only real zeroes.

Definition

Let CMS denote the set of real sequences $\left\{\gamma_{k}\right\}_{k=0}^{\infty}$ with the following property: For any $n \in \mathbb{N}, \sum_{k=0}^{n} \gamma_{k} a_{k} x^{k}$ is hyperbolic whenever $\sum_{k=0}^{n} a_{k} x^{k}$ is hyperbolic.

Classical Multiplier Sequences

Definition

We call a polynomial hyperbolic if it has only real zeroes.
Definition
Let CMS denote the set of real sequences $\left\{\gamma_{k}\right\}_{k=0}^{\infty}$ with the following property: For any $n \in \mathbb{N}, \sum_{k=0}^{n} \gamma_{k} a_{k} x^{k}$ is hyperbolic whenever $\sum_{k=0}^{n} a_{k} x^{k}$ is hyperbolic.

Definition

Let $C M S_{n}$ denote the set of real sequences of $n+1$ terms $\left\{\gamma_{k}\right\}_{k=0}^{n}$ with the following property: For any $m \leq n, \sum_{k=0}^{m} \gamma_{k} a_{k} x^{k}$ is hyperbolic whenever $\sum_{k=0}^{m} a_{k} x^{k}$ is hyperbolic.

Classical Multiplier Sequences

Proposition (Pólya and Schur)
A sequence of the form $\left\{\ldots, \gamma_{n}, 0, \gamma_{n+2}, \ldots\right\}$, where $\gamma_{n} \neq 0$ and $\gamma_{n+2} \neq 0$ is not a classical multiplier sequence.

Classical Multiplier Sequences

Proposition (Pólya and Schur)
A sequence of the form $\left\{\ldots, \gamma_{n}, 0, \gamma_{n+2}, \ldots\right\}$, where $\gamma_{n} \neq 0$ and $\gamma_{n+2} \neq 0$ is not a classical multiplier sequence.

Corollary
If $\left\{\gamma_{k}\right\}_{k=0}^{n}$ is an n-sequence and $\gamma_{n}=0$, then $\left\{\gamma_{k}\right\}_{k=0}^{n} \cup\{a\}$ for $a \neq 0$ is not an ($n+1$)-sequence.

Classical Multiplier Sequences

Proposition (Pólya and Schur)
A sequence of the form $\left\{\ldots, \gamma_{n}, 0, \gamma_{n+2}, \ldots\right\}$, where $\gamma_{n} \neq 0$ and $\gamma_{n+2} \neq 0$ is not a classical multiplier sequence.

Corollary
If $\left\{\gamma_{k}\right\}_{k=0}^{n}$ is an n-sequence and $\gamma_{n}=0$, then $\left\{\gamma_{k}\right\}_{k=0}^{n} \cup\{a\}$ for $a \neq 0$ is not an ($n+1$)-sequence.

Proposition (Pólya and Schur)
A polynomial of the form $f(x)=\sum_{k=0}^{m} a_{k} x^{k}+\sum_{k=m+3}^{n} a_{k} x^{k}$ is not hyperbolic.

Algebraic Characterization

Definition

Let \mathcal{H}_{n} denote the set of polynomials over \mathbb{R} of degree at most n whose roots are all real and of the same sign.

Algebraic Characterization

Definition

Let \mathcal{H}_{n} denote the set of polynomials over \mathbb{R} of degree at most n whose roots are all real and of the same sign.

Theorem (Pólya-Schur)
If $\left\{\gamma_{k}\right\}_{k=0}^{\infty} \in \mathbb{R}^{\omega}$, then $\left\{\gamma_{k}\right\}_{k=0}^{\infty} \in C M S$ if and only if

$$
g_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} \gamma_{k} x^{k} \in \mathcal{H}_{n}
$$

for all $n \in \mathbb{N}$.

Algebraic Characterization

Corollary
If $\left\{\gamma_{k}\right\}_{k=0}^{n} \in \mathbb{R}^{n+1}$, then $\left\{\gamma_{k}\right\}_{k=0}^{n} \in C M S_{n}$ if and only if

$$
g_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} \gamma_{k} x^{k} \in \mathcal{H}_{n}
$$

Algebraic Characterization

Corollary
If $\left\{\gamma_{k}\right\}_{k=0}^{n} \in \mathbb{R}^{n+1}$, then $\left\{\gamma_{k}\right\}_{k=0}^{n} \in C M S_{n}$ if and only if

$$
g_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} \gamma_{k} x^{k} \in \mathcal{H}_{n}
$$

We call g_{n} the n-th Jensen polynomial associated to $\left\{\gamma_{k}\right\}_{k=0}^{n}$ and write $g_{n} \sim\left\{\gamma_{k}\right\}_{k=0}^{n}$.

Topological Equivalence

Proposition
Let

$$
\phi\left(\sum_{k=0}^{n}\binom{n}{k} \gamma_{k} x^{k}\right)=\left\{\gamma_{k}\right\}_{k=0}^{n}
$$

Then $\phi: \mathcal{H}_{n} \rightarrow C M S_{n}$ is a homeomorphism for each $n \in \mathbb{N}$.

Topological Equivalence

Proposition

Let

$$
\phi\left(\sum_{k=0}^{n}\binom{n}{k} \gamma_{k} x^{k}\right)=\left\{\gamma_{k}\right\}_{k=0}^{n}
$$

Then $\phi: \mathcal{H}_{n} \rightarrow C M S_{n}$ is a homeomorphism for each $n \in \mathbb{N}$.

Remark

For each $n \in \mathbb{N}$, we interpret \mathcal{H}_{n} as a topological subspace of $\mathbb{R}_{n}[x]$ with the compact convergence topology. Similarly, we interpret $C M S_{n}$ as a topological subspace of \mathbb{R}^{n+1} with the Euclidean metric.

Main Question

How is $C M S$ related to each $C M S_{n}$? How is $C M S_{n}$ related to $C M S_{m}$ for $n \neq m$?

Main Question

How is $C M S$ related to each $C M S_{n}$? How is $C M S_{n}$ related to $C M S_{m}$ for $n \neq m$?

Definition
Let $\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}\right\} \in C M S_{n}$ and $\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}, \ldots, \gamma_{m}\right\} \in C M S_{m}$ for $m>n$. Then we say that $\left\{\gamma_{k}\right\}_{k=0}^{m}$ is an extension of $\left\{\gamma_{k}\right\}_{k=0}^{n}$.

Main Question

How is $C M S$ related to each $C M S_{n}$? How is $C M S_{n}$ related to $C M S_{m}$ for $n \neq m$?

Definition
Let $\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}\right\} \in C M S_{n}$ and $\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}, \ldots, \gamma_{m}\right\} \in C M S_{m}$ for $m>n$. Then we say that $\left\{\gamma_{k}\right\}_{k=0}^{m}$ is an extension of $\left\{\gamma_{k}\right\}_{k=0}^{n}$.

Note that, for any m-sequence $\left\{\gamma_{k}\right\}_{k=0}^{m}$, and any $n<m,\left\{\gamma_{k}\right\}_{k=0}^{n}$ is an n-sequence.

Main Question

How is $C M S$ related to each $C M S_{n}$? How is $C M S_{n}$ related to $C M S_{m}$ for $n \neq m$?

Definition
Let $\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}\right\} \in C M S_{n}$ and $\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}, \ldots, \gamma_{m}\right\} \in C M S_{m}$ for $m>n$. Then we say that $\left\{\gamma_{k}\right\}_{k=0}^{m}$ is an extension of $\left\{\gamma_{k}\right\}_{k=0}^{n}$.

Note that, for any m-sequence $\left\{\gamma_{k}\right\}_{k=0}^{m}$, and any $n<m,\left\{\gamma_{k}\right\}_{k=0}^{n}$ is an n-sequence.

Question

For any $m>n$, can every n-sequence be extended to an m-sequence? If not, can we characterize which ones can be extended, and how?

Known Results

Theorem (Craven and Csordas)
The following hold:

Known Results

Theorem (Craven and Csordas)
The following hold:

- For each integer $n \geq 3$, there exists an n-sequence which cannot be extended to an ($n+1$)-sequence.

Known Results

Theorem (Craven and Csordas)
The following hold:

- For each integer $n \geq 3$, there exists an n-sequence which cannot be extended to an $(n+1)$-sequence.
- If $\left\{\gamma_{k}\right\}_{k=0}^{n}$ is a sequence of real numbers with $\gamma_{0}=1$ and $\gamma_{k-1}^{2} \geq 4(1-1 / k) \gamma_{k} \gamma_{k-2}$ for $k \in\{2,3, \ldots, n\}$, then $\left\{\gamma_{k}\right\}_{k=0}^{n}$ is an n-sequence which is extendable to CMS.

Known Results

Theorem (Craven and Csordas)
The following hold:

- For each integer $n \geq 3$, there exists an n-sequence which cannot be extended to an $(n+1)$-sequence.
- If $\left\{\gamma_{k}\right\}_{k=0}^{n}$ is a sequence of real numbers with $\gamma_{0}=1$ and $\gamma_{k-1}^{2} \geq 4(1-1 / k) \gamma_{k} \gamma_{k-2}$ for $k \in\{2,3, \ldots, n\}$, then $\left\{\gamma_{k}\right\}_{k=0}^{n}$ is an n-sequence which is extendable to CMS.
- If g_{n} is a Jensen polynomial of degree n with two consecutive non-simple zeros, then the associated n-sequence cannot be extended to an $(n+1)$-sequence.

Characterization of Boundary and Interior

Theorem (H-P)

For each $n \in \mathbb{N}_{n \geq 2}, p \in \mathcal{H}_{n}$ is a boundary point if and only if $p(0)=0$ or p has a zero of multiplicity $m \geq 2$.

Characterization of Boundary and Interior

Theorem (H-P)

For each $n \in \mathbb{N}_{n \geq 2}, p \in \mathcal{H}_{n}$ is a boundary point if and only if $p(0)=0$ or p has a zero of multiplicity $m \geq 2$.

Corollary
\mathcal{H}_{n} has nonempty interior in $\mathbb{R}_{n}[x]$ for all $n \in \mathbb{N}$. Equivalently, $C M S_{n}$ has nonempty interior in \mathbb{R}^{n+1} for all $n \in \mathbb{N}$.

Characterization of Boundary and Interior

Theorem (H-P)
For each $n \in \mathbb{N}_{n \geq 2}, p \in \mathcal{H}_{n}$ is a boundary point if and only if $p(0)=0$ or p has a zero of multiplicity $m \geq 2$.

Corollary
\mathcal{H}_{n} has nonempty interior in $\mathbb{R}_{n}[x]$ for all $n \in \mathbb{N}$. Equivalently, $C M S_{n}$ has nonempty interior in \mathbb{R}^{n+1} for all $n \in \mathbb{N}$.

Example

- $(x+1)^{n} \sim\{1,1, \ldots\}$ is a boundary point of \mathcal{H}_{n} and $C M S_{n}$.
- $x+1 \sim\left\{1, \frac{1}{n}, 0,0, \ldots\right\}$ is an interior point of \mathcal{H}_{n} and $C M S_{n}$.

Constructing n-sequences without Extensions

Consider $(x+1)^{n} \in \mathcal{H}_{n+1}, n \geq 2$.

Constructing n-sequences without Extensions

Consider $(x+1)^{n} \in \mathcal{H}_{n+1}, n \geq 2$.

$$
(x+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}=\sum_{k=0}^{n+1}\binom{n+1}{k} \frac{n+1-k}{n+1} x^{k} \sim\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1}
$$

Constructing n-sequences without Extensions

Consider $(x+1)^{n} \in \mathcal{H}_{n+1}, n \geq 2$.

$$
(x+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}=\sum_{k=0}^{n+1}\binom{n+1}{k} \frac{n+1-k}{n+1} x^{k} \sim\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1}
$$

- Thus, $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \in C M S_{n+1}$

Constructing n-sequences without Extensions

Consider $(x+1)^{n} \in \mathcal{H}_{n+1}, n \geq 2$.

$$
(x+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}=\sum_{k=0}^{n+1}\binom{n+1}{k} \frac{n+1-k}{n+1} x^{k} \sim\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1}
$$

- Thus, $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \in C M S_{n+1}$
- Is $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \cup\{0\} \in C M S_{n+2}$?

Constructing n-sequences without Extensions

$$
\text { Is }\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \cup\{0\} \in C M S_{n+2} ?
$$

Constructing n-sequences without Extensions

Is $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \cup\{0\} \in C M S_{n+2}$? We compute the $(n+2)$ th Jensen polynomial:

Constructing n-sequences without Extensions

Is $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \cup\{0\} \in C M S_{n+2}$? We compute the $(n+2)$ th Jensen polynomial:

$$
g(x)=\sum_{k=0}^{n}\binom{n+2}{k} \frac{n+1-k}{n+1} x^{k}
$$

Constructing n-sequences without Extensions

Is $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \cup\{0\} \in C M S_{n+2}$? We compute the $(n+2)$ th Jensen polynomial:

$$
g(x)=\sum_{k=0}^{n}\binom{n+2}{k} \frac{n+1-k}{n+1} x^{k}=\frac{n+2}{x^{n+2}} \int_{0}^{x} t(t+1)^{n} d t
$$

Constructing n-sequences without Extensions

Is $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \cup\{0\} \in C M S_{n+2}$? We compute the $(n+2)$ th Jensen polynomial:

$$
g(x)=\sum_{k=0}^{n}\binom{n+2}{k} \frac{n+1-k}{n+1} x^{k}=\frac{n+2}{x^{n+2}} \int_{0}^{x} t(t+1)^{n} d t
$$

- If n is odd, g has no real zeroes. If n is even, then g has exactly one real zero.

Constructing n-sequences without Extensions

Is $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \cup\{0\} \in C M S_{n+2}$? We compute the $(n+2)$ th Jensen polynomial:

$$
g(x)=\sum_{k=0}^{n}\binom{n+2}{k} \frac{n+1-k}{n+1} x^{k}=\frac{n+2}{x^{n+2}} \int_{0}^{x} t(t+1)^{n} d t
$$

- If n is odd, g has no real zeroes. If n is even, then g has exactly one real zero.
- Therefore, $g \notin \mathcal{H}_{n+2}$, which implies $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \cup\{0\} \notin C M S_{n+2}$

Constructing n-sequences without Extensions

Is $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \cup\{0\} \in C M S_{n+2}$? We compute the $(n+2)$ th Jensen polynomial:

$$
g(x)=\sum_{k=0}^{n}\binom{n+2}{k} \frac{n+1-k}{n+1} x^{k}=\frac{n+2}{x^{n+2}} \int_{0}^{x} t(t+1)^{n} d t
$$

- If n is odd, g has no real zeroes. If n is even, then g has exactly one real zero.
- Therefore, $g \notin \mathcal{H}_{n+2}$, which implies $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1} \cup\{0\} \notin C M S_{n+2}$
- Thus, $\left\{\frac{n+1-k}{n+1}\right\}_{k=0}^{n+1}$ cannot be extended.

Further Results

- The n-sequence associated with x^{m} for any $m \leq n$ can always be extended to CMS.

Further Results

- The n-sequence associated with x^{m} for any $m \leq n$ can always be extended to CMS.
- There are some interior points which can be extended, e.g. $(x+1)(x+2) \in \mathcal{H}_{3}$, and some which cannot, e.g. $(x+1)(x+2)(x+3) \in \mathcal{H}_{4}$.

Further Results

- The n-sequence associated with x^{m} for any $m \leq n$ can always be extended to CMS.
- There are some interior points which can be extended, e.g. $(x+1)(x+2) \in \mathcal{H}_{3}$, and some which cannot, e.g. $(x+1)(x+2)(x+3) \in \mathcal{H}_{4}$.
- With a similar argument, we can show that, for any $m<n$ and $a \neq 0$, the n-sequence associated with $(x+a)^{m}$ cannot be extended to an ($n+1$)-sequence.

Reverse

Definition

If p is a polynomial of degree n, then we define the reverse of p to be the polynomial $p^{*}(x)=x^{n} p(1 / x)$.

Reverse

Definition

If p is a polynomial of degree n, then we define the reverse of p to be the polynomial $p^{*}(x)=x^{n} p(1 / x)$.

Example
Let $f(x)=2 x^{5}+7 x^{4}+9 x^{2}-3 x+1$. Then $f^{*}(x)=x^{5}-3 x^{4}+9 x^{3}+7 x+2$.

Reverse

Definition

If p is a polynomial of degree n, then we define the reverse of p to be the polynomial $p^{*}(x)=x^{n} p(1 / x)$.

Example
Let $f(x)=2 x^{5}+7 x^{4}+9 x^{2}-3 x+1$. Then $f^{*}(x)=x^{5}-3 x^{4}+9 x^{3}+7 x+2$.

Proposition

Reverse preserves hyperbolicity of polynomials and the sign and multiplicity of their nonzero zeros.

Integral Representation

Proposition (Craven and Csordas)

If g_{n} and g_{n+1} are the Jensen polynomials associated with $\left\{\gamma_{k}\right\}_{k=0}^{n}$ and $\left\{\gamma_{k}\right\}_{k=0}^{n+1}$, respectively, then

$$
g_{n+1}^{*^{\prime}}(x)=(n+1) g_{n}^{*}(x)
$$

Integral Representation

Proposition (Craven and Csordas)

If g_{n} and g_{n+1} are the Jensen polynomials associated with $\left\{\gamma_{k}\right\}_{k=0}^{n}$ and $\left\{\gamma_{k}\right\}_{k=0}^{n+1}$, respectively, then

$$
g_{n+1}^{*^{\prime}}(x)=(n+1) g_{n}^{*}(x)
$$

Corollary
If g_{n} is a Jensen polynomial, then the associated n-sequence $\left\{\gamma_{k}\right\}_{k=0}^{n}$ is extendable to $C M S_{n+1}$ if and only if there exists an $a \in \mathbb{R}$ such that

$$
f(x)=(n+1) \int_{a}^{x} g_{n}^{*}(t) d t \in \mathcal{H}_{n+1}
$$

In this case, $\left\{\gamma_{k}\right\}_{k=0}^{n} \cup\{-G(a)\}$ is an $(n+1)$-sequence, where G is an antiderivative of f with $G(0)=0$.

New Results

Theorem (H-P)
Suppose $g_{n}(x)=(x+a)^{m} q(x)$, where $\operatorname{deg} q<n$, $a \neq 0$, and $m \geq 2$. Let $\left\{a_{k}\right\}$ denote the zeros p and assume that $|a| \geq\left|a_{k}\right|$ or $|a| \leq\left|a_{k}\right|$ for all $1 \leq k \leq \operatorname{deg} p$. Then $g_{n+1} \notin \mathcal{H}_{n+1}$.

New Results

Theorem (H-P)

Suppose $g_{n}(x)=(x+a)^{m} q(x)$, where $\operatorname{deg} q<n$, $a \neq 0$, and $m \geq 2$. Let $\left\{a_{k}\right\}$ denote the zeros p and assume that $|a| \geq\left|a_{k}\right|$ or $|a| \leq\left|a_{k}\right|$ for all $1 \leq k \leq \operatorname{deg} p$. Then $g_{n+1} \notin \mathcal{H}_{n+1}$.

Theorem (H-P; Necessary Condition for Extendability)
Suppose $g_{n}(x)=(x+a)^{2} q(x)$, where $a \neq 0, q \in \mathcal{H}_{n}$, and $\operatorname{deg} g_{n}=m<n$. If $g_{n+1} \in \mathcal{H}_{n+1}$, then $g_{n+1}(-a)=0$

New Results

Theorem (H-P)

Suppose $g_{n}(x)=(x+a)^{m} q(x)$, where $\operatorname{deg} q<n$, $a \neq 0$, and $m \geq 2$. Let $\left\{a_{k}\right\}$ denote the zeros p and assume that $|a| \geq\left|a_{k}\right|$ or $|a| \leq\left|a_{k}\right|$ for all $1 \leq k \leq \operatorname{deg} p$. Then $g_{n+1} \notin \mathcal{H}_{n+1}$.

Theorem (H-P; Necessary Condition for Extendability)
Suppose $g_{n}(x)=(x+a)^{2} q(x)$, where $a \neq 0, q \in \mathcal{H}_{n}$, and $\operatorname{deg} g_{n}=m<n$. If $g_{n+1} \in \mathcal{H}_{n+1}$, then $g_{n+1}(-a)=0$

Theorem (H-P; Sufficient Condition for Extendability)
Suppose $g_{n}(x)=(x+a)^{j} q(x)$, where $j \geq 2$, $a \neq 0, q \in \mathcal{H}_{n}$, and $\operatorname{deg} g_{n}=m<n$. If $g_{n+1}(-a)=0$ and $m-j \leq 2$, then $g_{n+1} \in \mathcal{H}_{n+1}$.

A Necessary Condition for Extendability

Theorem
Suppose $g_{n}(x)=(x+a)^{2} q(x)$ where $a \neq 0, q \in \mathcal{H}_{n}$, and $\operatorname{deg} g_{n}=m<n$. Then if $g_{n+1}(-a)=0, g_{n+1} \in \mathcal{H}_{n}$.

A Necessary Condition for Extendability

Theorem
Suppose $g_{n}(x)=(x+a)^{2} q(x)$ where $a \neq 0, q \in \mathcal{H}_{n}$, and $\operatorname{deg} g_{n}=m<n$. Then if $g_{n+1}(-a)=0, g_{n+1} \in \mathcal{H}_{n}$.

Proof.
Let $s=1 / a$. By the integral representation and Taylor's theorem,

$$
g_{n+1}^{*}(x)=(n+1) \int_{0}^{x} g_{n}^{*}(t) d t=\frac{n+1}{s^{2}} \int_{0}^{x} t^{m-n}(t+s)^{2} q^{*}(t) d t
$$

A Necessary Condition for Extendability

Theorem

Suppose $g_{n}(x)=(x+a)^{2} q(x)$ where $a \neq 0, q \in \mathcal{H}_{n}$, and $\operatorname{deg} g_{n}=m<n$. Then if $g_{n+1}(-a)=0, g_{n+1} \in \mathcal{H}_{n}$.

Proof.
Let $s=1 / a$. By the integral representation and Taylor's theorem,

$$
\begin{aligned}
g_{n+1}^{*}(x)= & (n+1) \int_{0}^{x} g_{n}^{*}(t) d t=\frac{n+1}{s^{2}} \int_{0}^{x} t^{m-n}(t+s)^{2} q^{*}(t) d t \\
& g_{n+1}^{*}(x)=g_{n+1}^{*}(-s)+\sum_{k=3}^{n+1} \frac{g_{n+1}^{*(k)}(-s)}{k!}(x+s)^{k}
\end{aligned}
$$

A Necessary Condition for Extendability

Theorem

Suppose $g_{n}(x)=(x+a)^{2} q(x)$ where $a \neq 0, q \in \mathcal{H}_{n}$, and $\operatorname{deg} g_{n}=m<n$. Then if $g_{n+1}(-a)=0, g_{n+1} \in \mathcal{H}_{n}$.

Proof.
Let $s=1 /$ a . By the integral representation and Taylor's theorem,

$$
\begin{aligned}
g_{n+1}^{*}(x)= & (n+1) \int_{0}^{x} g_{n}^{*}(t) d t=\frac{n+1}{s^{2}} \int_{0}^{x} t^{m-n}(t+s)^{2} q^{*}(t) d t \\
& g_{n+1}^{*}(x)=g_{n+1}^{*}(-s)+\sum_{k=3}^{n+1} \frac{g_{n+1}^{*(k)}(-s)}{k!}(x+s)^{k}
\end{aligned}
$$

Thus if $g_{n+1}^{*}(-s) \neq 0$, then g_{n+1}^{*} is not hyperbolic, which implies $g_{n+1} \neq \mathcal{H}_{n}$.

A Sufficient Condition for Extendability

Theorem
Suppose $g_{n}(x)=(x+a)^{j} q(x)$, where $j \geq 2$, $a \neq 0, q \in \mathcal{H}_{n}$, and $\operatorname{deg} g_{n}=m<n$. If $g_{n+1}(-a)=0$ and $m-j \leq 2$, then $g_{n+1} \in \mathcal{H}_{n}$.

A Sufficient Condition for Extendability

Theorem
Suppose $g_{n}(x)=(x+a)^{j} q(x)$, where $j \geq 2$, $a \neq 0, q \in \mathcal{H}_{n}$, and $\operatorname{deg} g_{n}=m<n$. If $g_{n+1}(-a)=0$ and $m-j \leq 2$, then $g_{n+1} \in \mathcal{H}_{n}$.

Proof.
Let $s=1 / a$. By Taylor's theorem,

$$
g_{n+1}^{*}(x)=(x+s)^{j+1} \sum_{k=j+1}^{n+1} \frac{g_{n+1}^{*(k)}(-s)}{k!} x^{k-j-1}
$$

A Sufficient Condition for Extendability

Theorem
Suppose $g_{n}(x)=(x+a)^{j} q(x)$, where $j \geq 2$, $a \neq 0, q \in \mathcal{H}_{n}$, and $\operatorname{deg} g_{n}=m<n$. If $g_{n+1}(-a)=0$ and $m-j \leq 2$, then $g_{n+1} \in \mathcal{H}_{n}$.

Proof.
Let $s=1 / a$. By Taylor's theorem,

$$
\begin{aligned}
& g_{n+1}^{*}(x)=(x+s)^{j+1} \sum_{k=j+1}^{n+1} \frac{g_{n+1}^{*(k)}(-s)}{k!} x^{k-j-1} \\
& g_{n+1}^{*}(x)=x^{m-n+1} \sum_{k=m-n+1}^{n+1} \frac{g_{n+1}^{*(k)}(0)}{k!} x^{k-j-1}
\end{aligned}
$$

A Sufficient Condition for Extendability

Theorem
Suppose $g_{n}(x)=(x+a)^{j} q(x)$, where $j \geq 2$, $a \neq 0, q \in \mathcal{H}_{n}$, and $\operatorname{deg} g_{n}=m<n$. If $g_{n+1}(-a)=0$ and $m-j \leq 2$, then $g_{n+1} \in \mathcal{H}_{n}$.

Proof.
Let $s=1 /$ a . By Taylor's theorem,

$$
\begin{aligned}
& g_{n+1}^{*}(x)=(x+s)^{j+1} \sum_{k=j+1}^{n+1} \frac{g_{n+1}^{*(k)}(-s)}{k!} x^{k-j-1} \\
& g_{n+1}^{*}(x)=x^{m-n+1} \sum_{k=m-n+1}^{n+1} \frac{g_{n+1}^{*(k)}(0)}{k!} x^{k-j-1}
\end{aligned}
$$

Hence, $g_{n+1}^{*}(x)$ has at most $(n+1)-(j+1)-(n-m+1)=(m-j)-1$ non-real roots. The condition $m-j \leq 2$ ensures that $g_{n+1}^{*}(x)$ must have all real roots.

Counterexample

In the sufficient condition, can we do any better than $m-j \leq 2$? The following result shows that we cannot:

Counterexample

In the sufficient condition, can we do any better than $m-j \leq 2$? The following result shows that we cannot:

Proposition (H-P)
There exists a function $g_{n}(x)=(x+a)^{j} q(x)$, where $j \geq 2, a \neq 0, q \in \mathcal{H}_{n}$, and $\operatorname{deg} g_{n}=m<n$, such that $g_{n+1}(-a)=0$, but $g_{n+1} \notin \mathcal{H}_{n+1}$.

Counterexample

In the sufficient condition, can we do any better than $m-j \leq 2$? The following result shows that we cannot:

Proposition (H-P)
There exists a function $g_{n}(x)=(x+a)^{j} q(x)$, where $j \geq 2, a \neq 0, q \in \mathcal{H}_{n}$, and $\operatorname{deg} g_{n}=m<n$, such that $g_{n+1}(-a)=0$, but $g_{n+1} \notin \mathcal{H}_{n+1}$.

Proof.
If $g_{6}(x)=\left(\frac{1}{5} x+1\right)\left(\frac{15}{21} x+1\right)\left(\frac{1}{2} x+1\right)(x+1)^{2}$, then
$g_{7}(x)=\frac{1}{60}(x+1)^{3}\left(15 x^{2}+59 x+60\right)$. The quadratic term is irreducible over \mathbb{R}, hence $g_{7} \notin \mathcal{H}_{7}$.

Counterexample

In the sufficient condition, can we do any better than $m-j \leq 2$? The following result shows that we cannot:

Proposition (H-P)
There exists a function $g_{n}(x)=(x+a)^{j} q(x)$, where $j \geq 2, a \neq 0, q \in \mathcal{H}_{n}$, and $\operatorname{deg} g_{n}=m<n$, such that $g_{n+1}(-a)=0$, but $g_{n+1} \notin \mathcal{H}_{n+1}$.

Proof.
If $g_{6}(x)=\left(\frac{1}{5} x+1\right)\left(\frac{15}{21} x+1\right)\left(\frac{1}{2} x+1\right)(x+1)^{2}$, then
$g_{7}(x)=\frac{1}{60}(x+1)^{3}\left(15 x^{2}+59 x+60\right)$. The quadratic term is irreducible over \mathbb{R}, hence $g_{7} \notin \mathcal{H}_{7}$.

Note that for the example given in the proof, $j=2$ and $m=5$, so $m-j=3$.

Further Research

The previous result shows that the necessary condition is not sufficient.

Further Research

The previous result shows that the necessary condition is not sufficient.
Problem
What is a necessary and sufficient condition for extendability of n-sequences which end in 0 ?

Further Research

The previous result shows that the necessary condition is not sufficient.
Problem
What is a necessary and sufficient condition for extendability of n-sequences which end in 0 ?

Problem
Under what conditions will an n-sequence of nonzero terms be non-extendable to an ($n+1$)-sequence?

Acknowledgments

We would like to thank:

- The California State University, Fresno and the National Science Foundation for their financial support (NSF Grant \#DMS-1460151)
- The California State University, Fresno Mathematics REU program, and
- Our mentor, Dr. Forgács for his support.

THANK YOU!

