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Classical Multiplier Sequences

Definition

We call a polynomial hyperbolic if it has only real zeroes.

Definition

Let CMS denote the set of real sequences {γk}∞k=0 with the following
property: For any n ∈ N,

∑n
k=0 γkakx

k is hyperbolic whenever
∑n

k=0 akx
k

is hyperbolic.

Definition

Let CMSn denote the set of real sequences of n + 1 terms {γk}nk=0 with
the following property: For any m ≤ n,

∑m
k=0 γkakx

k is hyperbolic
whenever

∑m
k=0 akx

k is hyperbolic.
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Classical Multiplier Sequences

Proposition (Pólya and Schur)

A sequence of the form {. . . , γn, 0, γn+2, . . . }, where γn ̸= 0 and γn+2 ̸= 0
is not a classical multiplier sequence.

Corollary

If {γk}nk=0 is an n-sequence and γn = 0, then {γk}nk=0 ∪ {a} for a ̸= 0 is
not an (n + 1)-sequence.

Proposition (Pólya and Schur)

A polynomial of the form f (x) =
∑m

k=0 akx
k +

∑n
k=m+3 akx

k is not
hyperbolic.
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Algebraic Characterization

Definition

Let Hn denote the set of polynomials over R of degree at most n whose
roots are all real and of the same sign.

Theorem (Pólya-Schur)

If {γk}∞k=0 ∈ Rω, then {γk}∞k=0 ∈ CMS if and only if

gn(x) =
n∑

k=0

(
n

k

)
γkx

k ∈ Hn

for all n ∈ N.
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Algebraic Characterization

Corollary

If {γk}nk=0 ∈ Rn+1, then {γk}nk=0 ∈ CMSn if and only if

gn(x) =
n∑

k=0

(
n

k

)
γkx

k ∈ Hn

We call gn the n-th Jensen polynomial associated to {γk}nk=0 and write
gn ∼ {γk}nk=0.
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Topological Equivalence

Proposition

Let

ϕ

(
n∑

k=0

(
n

k

)
γkx

k

)
= {γk}nk=0

Then ϕ : Hn → CMSn is a homeomorphism for each n ∈ N.

Remark

For each n ∈ N, we interpret Hn as a topological subspace of Rn[x ] with
the compact convergence topology. Similarly, we interpret CMSn as a
topological subspace of Rn+1 with the Euclidean metric.
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Main Question

How is CMS related to each CMSn? How is CMSn related to CMSm for
n ̸= m?

Definition

Let {γ0, γ1, . . . , γn} ∈ CMSn and {γ0, γ1, . . . , γn, . . . , γm} ∈ CMSm for
m > n. Then we say that {γk}mk=0 is an extension of {γk}nk=0.

Note that, for any m-sequence {γk}mk=0, and any n < m, {γk}nk=0 is an
n-sequence.

Question

For any m > n, can every n-sequence be extended to an m-sequence? If
not, can we characterize which ones can be extended, and how?
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Known Results

Theorem (Craven and Csordas)

The following hold:

For each integer n ≥ 3, there exists an n-sequence which cannot be
extended to an (n + 1)-sequence.

If {γk}nk=0 is a sequence of real numbers with γ0 = 1 and
γ2k−1 ≥ 4(1− 1/k)γkγk−2 for k ∈ {2, 3, . . . , n}, then {γk}nk=0 is an
n-sequence which is extendable to CMS .

If gn is a Jensen polynomial of degree n with two consecutive
non-simple zeros, then the associated n-sequence cannot be extended
to an (n + 1)-sequence.
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Characterization of Boundary and Interior

Theorem (H-P)

For each n ∈ Nn≥2, p ∈ Hn is a boundary point if and only if p(0) = 0 or
p has a zero of multiplicity m ≥ 2.

Corollary

Hn has nonempty interior in Rn[x ] for all n ∈ N. Equivalently, CMSn has
nonempty interior in Rn+1 for all n ∈ N.

Example

(x + 1)n ∼ {1, 1, . . . } is a boundary point of Hn and CMSn.

x + 1 ∼ {1, 1n , 0, 0, . . . } is an interior point of Hn and CMSn.
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Constructing n-sequences without Extensions

Consider (x + 1)n ∈ Hn+1, n ≥ 2.

(x + 1)n =
n∑

k=0

(
n

k

)
xk =

n+1∑
k=0

(
n + 1

k

)
n + 1− k

n + 1
xk ∼

{
n + 1− k

n + 1

}n+1

k=0

Thus,
{
n+1−k
n+1

}n+1

k=0
∈ CMSn+1

Is
{
n+1−k
n+1

}n+1

k=0
∪ {0} ∈ CMSn+2?
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Constructing n-sequences without Extensions

Is
{
n+1−k
n+1

}n+1

k=0
∪ {0} ∈ CMSn+2?

We compute the (n + 2)th Jensen
polynomial:

g(x) =
n∑

k=0

(
n + 2

k

)
n + 1− k

n + 1
xk =

n + 2

xn+2

∫ x

0
t(t + 1)ndt

If n is odd, g has no real zeroes. If n is even, then g has exactly one
real zero.

Therefore, g /∈ Hn+2, which implies
{
n+1−k
n+1

}n+1

k=0
∪ {0} /∈ CMSn+2

Thus,
{
n+1−k
n+1

}n+1

k=0
cannot be extended.
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Further Results

The n-sequence associated with xm for any m ≤ n can always be
extended to CMS .

There are some interior points which can be extended, e.g.
(x + 1)(x + 2) ∈ H3, and some which cannot, e.g.
(x + 1)(x + 2)(x + 3) ∈ H4.

With a similar argument, we can show that, for any m < n and a ̸= 0,
the n-sequence associated with (x + a)m cannot be extended to an
(n + 1)-sequence.
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Reverse

Definition

If p is a polynomial of degree n, then we define the reverse of p to be the
polynomial p∗(x) = xnp(1/x).

Example

Let f (x) = 2x5 + 7x4 + 9x2 − 3x + 1. Then
f ∗(x) = x5 − 3x4 + 9x3 + 7x + 2.

Proposition

Reverse preserves hyperbolicity of polynomials and the sign and
multiplicity of their nonzero zeros.
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Integral Representation

Proposition (Craven and Csordas)

If gn and gn+1 are the Jensen polynomials associated with {γk}nk=0 and
{γk}n+1

k=0, respectively, then

g∗′
n+1(x) = (n + 1)g∗

n (x)

Corollary

If gn is a Jensen polynomial, then the associated n-sequence {γk}nk=0 is
extendable to CMSn+1 if and only if there exists an a ∈ R such that

f (x) = (n + 1)

∫ x

a
g∗
n (t)dt ∈ Hn+1

In this case, {γk}nk=0 ∪ {−G (a)} is an (n + 1)-sequence, where G is an
antiderivative of f with G (0) = 0.
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New Results

Theorem (H-P)

Suppose gn(x) = (x + a)mq(x), where deg q < n, a ̸= 0, and m ≥ 2. Let
{ak} denote the zeros p and assume that |a| ≥ |ak | or |a| ≤ |ak | for all
1 ≤ k ≤ deg p. Then gn+1 /∈ Hn+1.

Theorem (H-P; Necessary Condition for Extendability)

Suppose gn(x) = (x + a)2q(x), where a ̸= 0, q ∈ Hn, and
deg gn = m < n. If gn+1 ∈ Hn+1, then gn+1(−a) = 0

Theorem (H-P; Sufficient Condition for Extendability)

Suppose gn(x) = (x + a)jq(x), where j ≥ 2, a ̸= 0, q ∈ Hn, and
deg gn = m < n. If gn+1(−a) = 0 and m − j ≤ 2, then gn+1 ∈ Hn+1.
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Counterexample

In the sufficient condition, can we do any better than m − j ≤ 2? The
following result shows that we cannot:

Proposition (H-P)

There exists a function gn(x) = (x + a)jq(x), where j ≥ 2, a ̸= 0, q ∈ Hn,
and deg gn = m < n, such that gn+1(−a) = 0, but gn+1 /∈ Hn+1.

Proof.

If g6(x) =
(
1
5x + 1

) (
15
21x + 1

) (
1
2x + 1

)
(x + 1)2, then

g7(x) =
1
60(x + 1)3(15x2 + 59x + 60). The quadratic term is irreducible

over R, hence g7 /∈ H7.

Note that for the example given in the proof, j = 2 and m = 5, so
m − j = 3.
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Further Research

The previous result shows that the necessary condition is not sufficient.

Problem

What is a necessary and sufficient condition for extendability of
n-sequences which end in 0?

Problem

Under what conditions will an n-sequence of nonzero terms be
non-extendable to an (n + 1)-sequence?
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