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1 Introduction

Let H denote the set of real univariate polynomials with only real zeroes. If p ∈
H, we say that p is hyperbolic. Now consider a linear operator T : R[x] → R[x].
If T [H] ⊂ H, we say that T is hyperbolicity preserving. In [3], Polyá and Schur
call a sequence {γk}∞k=0 ⊂ R a classical multiplier sequence if

∑n
k=0 γkakx

k ∈ H
whenever

∑n
k=0 akx

k ∈ H. Note that if a linear operator Γ : R[x] → R[x] is
diagonal with respect to the standard basis {xk}∞k=0 with eigenvalues {γk}∞k=0,
then for any polynomial p(x) =

∑n
k=0 akx

k, Γ[p(x)] =
∑n

k=0 γkakx
k. We can

thus define a classical multiplier sequence equivalently as the sequence of eigen-
values of a diagonal hyperbolicity preserving operator on R with respect to the
standard basis, i.e.

Definition 1. Let {γk}∞k=0 be a sequence of real numbers and let Γ : R[x] → R[x]
be a diagonal linear operator with respect to the standard basis with eigenvalues
{γk}∞k=0. Then we write Γ = {γk}∞k=0 and say that, if Γ[p] ∈ H for all p ∈ H,
then {γk}∞k=0 is a classical multiplier sequence.

Polyá and Schur gave a complete characterization of classical multiplier se-
quences in terms of entire functions. In order to state their result, we define the
Laguerre-Polyá class, L − Psa, to be the set of entire functions of the form

ϕ(x) = cxneax
w∏

k=1

(
1 +

x

xk

)
where c ∈ R, 0 ≤ w ≤ ∞, n ∈ N,

∑∞
k=0 1/xk < ∞, and one of the following

additional conditions hold:

• b ≥ 0 and xk > 0 for all k ∈ N

• b ≤ 0 and xk < 0 for all k ∈ N.

It is known [4, Theorem 44, p. 17] that L − Psa consists of precisely those
entire functions which can be locally uniformly approximated by polynomials
with only real zeroes of the same sign. Furthermore, the first additional condi-
tion above corresponds to those which are local uniform limits of polynomials
with non-negative real zeroes, whereas the second corresponds to those which
are local uniform limits of polynomials with non-positive real zeroes.

In terms of the Laguerre-Polyá class, Polyá and Schur proved the following
two characterizations of classical multiplier sequences:
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Theorem 2. [3] Let {γk}∞k=0 be a sequence of non-negative real numbers. Then
the following are equivalent:

1. {γk}∞k=0 is a classical multiplier sequence.

2. For all n ∈ N,
n∑

k=0

(
n

k

)
γkx

k ∈ L − Psa ∩ Rn[x]

3.
∞∑
k=0

γk
k!

xk ∈ L − Psa

Respectively, conditions 2 and 3 are known as the algebraic and transcen-
dental characterizations of classical multiplier sequences. We now state the
following important analogues of some classical results:

Lemma 3. [2] Let {γk}nk=0 be an n-sequence. Then the following hold:

1. The nonzero terms of {γk}nk=0 are either all of the same sign or of alter-
nating signs.

2. If γiγj ̸= 0 for any i < j, then γk ̸= 0 for all i < k < j.

3. {γn−k}nk=0 is an n-sequence.

We also note the following well-known property of hyperbolic polynomials
which will be of use to us later:

Lemma 4. [3] A polynomial of the form f(x) =
∑m

k=0 akx
k +

∑n
k=m+j akx

k

for j ≥ 3 is not hyperbolic.

The theory of classical multiplier sequences, along with their analogues in
other polynomial bases, has been developed greatly following the work of Polyá
and Schur. By comparison, their analogues for finite-dimensional vector spaces
Rn[x] have not been very thoroughly studied. In this paper, we build on the
work by Craven and Csordas [2] to further develop this theory. For brevity, we
introduce the notation Hn = L − Psa ∩ Rn[x].

Definition 5. Let Γ = {γk}nk=0 be a sequence of real numbers. If Γ[p] ∈ Hn for
all p ∈ Hn, then we say that {γk}nk=0 is an n-sequence.

We now prove the natural analogue of the algebraic characterization, which
will be essential to the following development.

Theorem 6. [2] If {γk}nk=0 ∈ Rn, then {γk}nk=0 is an n-sequence if and only if

n∑
k=0

(
n

k

)
γkx

k ∈ Hn

First, we state the following theorem as a lemma:
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Lemma 7 (Malo-Schur-Szegö). [1] Let

A(z) =

n∑
k=0

(
n

k

)
akx

k and B(z) =

n∑
k=0

(
n

k

)
bkx

k

and set

C(z) =

n∑
k=0

(
n

k

)
akbkx

k

If the zeroes of A(z) all lie in the interval (−a, a) and the zeroes of B(z)
all lie in either the interval (−b, 0) or the interval (0, b), for a, b > 0, then the
zeroes of C(z) all lie in the interval (−ab, ab).

Note that, in particular, if A(z) has only real zeroes and B(z) has only real
zeroes of the same sign, then C(z) has only real zeroes. We now proceed to the
proof of the theorem:

Proof. Let Γ : Rn[x] → Rn[x] be diagonal over the standard basis with eigen-
values {γk}nk=0, i.e. Γ[x

k] = γkx
k for all 0 ≤ k ≤ n. By the binomial theorem,

Γ[(1 + x)n] =

n∑
k=0

(
n

k

)
γkx

k

Now, assume {γk}nk=0 ∈ CMSn. Then Γ is hyperbolicity preserving. It is
clear that Γ[(1 + x)n] has only non-positive or non-negative zeroes according
to whether sgn γk = sgn γk+1 or sgn γk = − sgn γk+1. This exhausts all cases.
Thus, Γ[(1 + x)n] ∈ Hn. This gives us the desired result.

Conversely, assume Γ[(1 + x)n] ∈ Hn. Let p(x) ∈ Hn, where

p(x) =

n∑
k=0

akx
k =

n∑
k=0

(
n

k

)
bkx

k

Let q(x) = Γ[p(x)]. Then we have

q(x) =

n∑
k=0

akγkx
k =

n∑
k=0

(
n

k

)
bkγkx

k

From the Malo-Schur-Szegö theorem, letting B(x) = p(x) and A(x) = Γ[(1+
x)n], it follows that q(x) has only real zeroes. Therefore, Γ is hyperbolicity
preserving, and the result follows.

We note that the functions gn(x) =
∑n

k=0

(
n
k

)
γkx

k are known as the Jensen
polynomials associated with the sequence {γk}nk=0. We will use this terminology
throughout the paper and denote it by gn(x) ∼ {γk}nk=0.
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2 Topology of n-sequences

The algebraic characterization furnishes a very useful connection between the
set of n-sequences and the set of Jensen polynomials in Hn, which is explicated
in the following theorem.

Theorem 8. Let CMSn denote the set of n-sequences as a topological sub-
space of Rn+1 with the Euclidean topology, and let Hn denote the same set
as a topological subspace of Rn[x] with the compact convergence topology. Let
ϕ : Hn → CMSn be given by

ϕ

(
n∑

k=0

(
n

k

)
γkx

k

)
= {γk}nk=0

Then ϕ is a homeomorphism.

Proof. Since polynomials are uniquely determined by their coefficients, it is clear
that this map is invertible. Thus, to show it is a homeomorphism, it suffices to
show that

ϕ

(
lim
j→∞

m∑
k=0

(
m

k

)
γk,jx

k

)
= lim

j→∞
ϕ

(
m∑

k=0

(
m

k

)
γk,jx

k

)
= lim

j→∞
{γk,j}mk=0

Let γk = limj→∞ γk,j for each 0 ≤ k ≤ m. We know that

lim
j→∞

m∑
k=0

(
m

k

)
γk,jx

k =

m∑
k=0

(
m

k

)
γkx

k

and

lim
j→∞

{γk,j}mk=0 = {γk}mk=0

The result follows.

Thus, any topological property of CMSn can be understood as a property
of Hn, and vice versa. We now demonstrate some basic topological properties
of these spaces, after stating a few lemmas which will be of use to us. The first
lemma is a special case of Dini’s theorem:

Lemma 9. If {pn} is a sequence of polynomials which converges monotonically
pointwise to a polynomial p, then convergence is also locally uniform.

Thus, monotone pointwise convergence pn → p is sufficient to establish ∥pn−
p∥ → 0. In this case, we simply write pn → p.

We now proceed to provide a complete characterization of the boundary of
CMSn for each n in terms of the corresponding function space Hn.
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Theorem 10. Let {γk}nk=0 be an n-sequence with gn ∼ {γk}nk=0, for n ≥ 2.
{γk}nk=0 is a boundary point of CMSn if and only if either gn(0) = 0 or gn has
a zero of multiplicity m ≥ 2.

Remark 11. We exclude the cases n = 0 and n = 1, since these spaces contain
no boundary points.

Proof. First, assume gn has a zero of multiplicity m ≥ 2. Call this zero −c.
Then we can write gn(x) = (x+ c)2r(x), for some r ∈ Hn−2. It suffices to find
a sequence of polynomials in Rn[x]−Hn which converges to gn. Consider

qm(x) =

(
x+ c+

i

m

)(
x+ c− i

m

)
r(x)

Then, for each m ∈ Z+, qm has two non-real zeroes which occur in conjugate
pairs. Thus, it is clear that qm ∈ Rn[x]−Hn for each m ∈ Z+. Now, note that(

x+ c+
i

m

)(
x+ c− i

m

)
=

(
x2 + 2cx+ c2 − 1

m

)
Thus, qm is monotonic in m, and it follows that qm → gn.
Now assume gn(0) = 0. Then we can write gn(x) = xr(x) for some r ∈ Hn−1.

Consider

qm(x) =

(
x± 1

m

)
r(x)

where the binomial factor has a plus or minus according to whether gn has
only non-negative or non-positive zeroes. Then it is clear that qm ∈ Rn[x]−Hn

for each m ∈ Z+ and qm → gn.
Conversely, assume that gn ∈ Hn is a boundary point. Then there exists

some sequence {qm}∞m=1 such that qm ∈ Rn[x]−Hn for allm ∈ Z+ and qm → gn.
Let

qm(x) =

N∏
k=1

(x+ ak,m)

Assume that gn(0) ̸= 0 and gn has only simple zeroes. Then we can write

gn(x) =

N∏
k=1

(x+ ak)

where |ak| > 0 for all 1 ≤ k ≤ N , ai = aj if and only if i = j, and
sgn ai = sgn aj for all 1 ≤ i ≤ j ≤ N . Then, by Hurewitz’s theorem, if qm → gn,
then ak,m → ak for all 1 ≤ k ≤ N .

We first claim that each ak,m must be real. To see this, note that the
non-real roots of real polynomials always occur in conjugate pairs. Thus, if
some ai,m is non-real, it must have a conjugate pair aj,m, i.e. aj,m = ai,m
for some i ̸= j. But if this is the case for all m ∈ N, then we would have
limm→∞ ai,m = limm→∞ aj,m, which would imply ai = aj for some i ̸= j,
contrary to our assumption. It follows that each ak,m is real.

Now, similarly, we argue that each ak,m must have the same sign. Take
0 < ϵ < c = min1≤k≤N{|ak|} (which is possible because each is positive). Then

5



to each 1 ≤ k ≤ N , there corresponds an Nk > 0 such that m > Nk implies
|ak,m − ak| < ϵ < c, which implies ak,m > 0. Now let M = max1≤k≤N{Nk}.
Then m > M implies ak,m > 0 for all 1 ≤ k ≤ N . It follows that qm ∈ Hn for
m > M , contrary to our assumption. Hence, each ak,m is of the same sign.

Therefore, either gn(0) = 0 or gn has a non-simple zero.

Taking one of many examples, e.g.

gn(x) =

n∏
k=1

(x+ k)

we have the following corollary.

Corollary 11.1. Hn has nonempty interior in Rn[x] for all n ∈ N. Equiva-
lently, CMSn has nonempty interior in Rn+1 for all n ∈ N.

With this result, it is clear that, for n ∈ N≥2, every boundary point of Hn is
also a boundary point of Hn+1, and also that there are some boundary points
of Hn+1 which are not boundary points of Hn, e.g. (1 + x)n+1. Thus, we have
∂Hn ⊂ ∂Hn+1 properly for all n ∈ N≥2.

We now compare these with the analogous properties in the infinite case.

Theorem 12. Let L − Psa be a topological subspace of the space of entire func-
tions with the compact convergence topology. Then L − Psa has empty interior.

Proof. Take any f ∈ L − Psa. Then we have

f(x) = ceaxxm
w∏

k=1

(
1 +

x

xk

)
where c ∈ R, 0 ≤ w ≤ ∞, sgn a = sgnxi = sgnxj for all 0 ≤ i ≤ j ≤ w,

m ∈ N, and
∑∞

k=1 1/xk < ∞. Now let

hn(x) = ceax−
x2

n xm
w∏

k=1

(
1 +

x

xk

)
Then hn is entire but not in L − Psa for all n ∈ Z+, but hn → f locally

uniformly on C. (To see this, note that e−x2/n → 1 locally uniformly on C.)

This gives us an interesting corollary.

Corollary 12.1. Every point of H is a boundary point.

Combining these results, we have

∅ = ∂H0 = ∂H1 ⊂ ∂H2 ⊂ ∂H3 ⊂ · · · ⊂ ∂H = H

where each containment is proper.
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3 Extensions of n-sequences

We now introduce the concept of an extension.

Definition 13. Let {γk}nk=0 ∈ CMSn and {δk}mk=0 ∈ CMSm for m ≥ n. We
say that {δk}mk=0 extends {γk}nk=0, or that {δk}mk=0 is an extension of {γk}nk=0,
if {γk}nk=0 = {δk}nk=0.

It is clear that, for any {γk}nk=0 ∈ CMSn and anym < n, {γk}mk=0 ∈ CMSm.
However, given an m-sequence, it is not clear how it can be extended to an n-
sequence, for n > m, nor is it clear that this is always possible. Indeed, it is
not, as the following example shows:

Example 14. Consider the sequence {1, 1.7, 2, 0}. The associated Jensen poly-
nomial is

g3(x) = 1 + (1.7)(3)x+ (2)(3)x2 =
1

120

(
x+ 51 +

√
201
)(

x+ 51−
√
201
)

Thus, by the algebraic characterization, {1, 1.7, 2, 0} is a 3-sequence. By part 2
of Lemma 3, if this sequence is extendable, then it must be extended by a 0, i.e.
{1, 1.7, 2, 0, 0} must be an extension. We now compute the associated Jensen
polynomial of this new sequence:

g4(x) = 1 + (1.7)(4)x+ (2)(6)x2 =
1

60

(
x+ 17 + i

√
11
)(

x+ 17− i
√
11
)

Thus, by the algebraic characterization, {1, 1.7, 2, 0, 0} is not a 4-sequence. It
follows that {1, 1.7, 2, 0} is not extendable.

We now seek conditions under which n-sequences are or are not extendable.
In particular, we are interested in the following problem:

Problem 15 (The Extension Problem). Under what conditions can an n-
sequence be extended to an m sequence for some m > n? If an extension is
possible, then which terms will extend it?

In [2], Craven and Csordas provide a necessary condition for extendability,
namely,

Theorem 16. [2, Theorem 4.1, p. 270]. Let {γk}nk=0 be a real sequence and let
gn ∼ {γk}nk=0. If gn has two consecutive non-simple roots, then {γk}nk=0 is not
extendable to an (n+ 1)-sequence.

This condition is, however, not sufficient. In this paper, we provide addi-
tional conditions under which n-sequences can and cannot be extended. First,
we will provide some motivation for our results. The following developments
abstract over the procedure in Example 14.

The aforementioned facts allow us to reformulate the problem of extending
n-sequences as follows: Suppose we are given an n-sequence, {γk}nk=0. The
associated Jensen polynomial gn is given by

gn(x) =

n∑
k=0

(
n

k

)
γkx

k
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By the algebraic characterization, it suffices to compute gn+1 and check the
location of its zeros. However, computing gn+1 requires choosing a value for
γn+1. Thus, let

f(x, y) = yxn+1 +

n∑
k=0

(
n+ 1

k

)
γkx

k

The extension problem is thus equivalent to asking if there exists a real
number γn+1 such that f(x, γn+1) = gn(x) ∈ Hn+1.

Now, suppose we are given an n-sequence which ends in a zero, i.e. {γk}nk=0

with γn = 0. Then the associated Jensen polynomial gn has degree less than n.
In particular, suppose m is the largest integer such that γm ̸= 0. Then m < n,
and we have

gn(x) =

m∑
k=0

(
n

k

)
γkx

k

By part 2 of Lemma 3, if there exists an extension of {γk}nk=0 to an (n+1)-
sequence, then γn+1 = 0. Thus, we have

gn+1(x) =

m∑
k=0

(
n+ 1

k

)
γkx

k

and we know that {γk}nk=0 is extendable to an (n+ 1)-sequence if and only
if gn+1 ∈ Hn+1.

3.1 Integral Representation

Before proceeding with our results, we provide some important background on
the reverse operator.

Definition 17. Let p ∈ Rn[x]. We define p∗(x) = xnp(1/x) and call p∗ the
reverse of p with respect to n.

The reverse operation is thus defined with respect to a natural number n,
greater than or equal to the degree of the polynomial being reversed. For brevity,
we will introduce the following conventions, unless otherwise specified: If p is a
generic polynomial, then p∗ will be used to refer to the reverse of p with respect
to deg p. If gn is a Jensen polynomial, then g∗n will be used to refer to the reverse
of gn with respect to n (regardless of the degree of gn).

Studying the reverse polynomials rather than the original polynomials as a
means of understanding n-sequences is justified by the following observations:

Lemma 18. Let p ∈ Rn[x]. Then the following hold:

1. (p∗)∗ = p.

2. If p(a) = 0 for some a ̸= 0, then p∗(1/a) = 0. Furthermore, these roots
have the same multiplicity.

3. If p(x) =
∑n

k=0 akx
k, then p∗(x) =

∑n
k=0 an−kx

k.
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Thus, the reverse operator preserves the reality, sign, and multiplicity of
zeros, and it can be calculated by a fairly explicit technique.

We now establish some important results about the reverse Jensen polyno-
mials. Assume gn+1 is a Jensen polynomial. We compute

g∗n+1(x) =

n+1∑
k=0

(
n+ 1

k

)
γn+1−kx

k

Differentiating, we obtain

g∗
′

n+1(x) =

n+1∑
k=0

(
n+ 1

k

)
γn+1−kkx

k−1

= (n+ 1)

n∑
k=0

(
n

k

)
γn−kx

k

= (n+ 1)g∗n(x)

We have thus proved the following:

Lemma 19. [2] If gn and gn+1 are the Jensen polynomials associated with
{γk}nk=0 and {γk}n+1

k=0 , respectively, then

g∗
′

n+1(x) = (n+ 1)g∗n(x)

Now, integrating both sides, we obtain

g∗n+1(x) = (n+ 1)

∫ x

a

g∗n(t)dt

for some a ∈ R. We can now find a in terms of g∗n. Let G be a primitive of
g∗n such that G(0) = 0. Integrating, we have g∗n+1(x) = (n + 1)(G(x) − G(a)).
It follows that g∗n+1(0) = −(n + 1)G(a). Reversing both sides shows that the
leading coefficient of gn+1 is −(n + 1)G(a). By the algebraic characterization,
this is precisely the term by which we are extending the n-sequence.

We are thus able to reformulate the extension problem in terms of the integral
of the reverse Jensen polynomial as follows:

Proposition 20 (The Integral Representation of the Extension Problem). If
gn is a Jensen polynomial, then the associated n-sequence {γk}nk=0 is extendable
to an (n+ 1)-sequence {γk}n+1

k=0 if and only if there exists an a ∈ R such that

f(x) =

∫ x

a

g∗n(t)dt ∈ Hn+1

In this case, γn+1 = −(n+ 1)G(a), and the associated Jensen polynomial is
given by gn+1(x) = (n+ 1)f∗(x).

Now consider the case where deg gn < n. Then deg gn+1 < n as well.
Thus, if there is an (n + 1)-sequence {γk}n+1

k=0 associated with gn+1, we must
have γn+1 = 0. Since G(0) = 0 by construction, it suffices to take a = 0.
Furthermore, since extension of an n-sequence by a zero is unique, taking a = 0
covers all possible extensions. It therefore suffices to consider the case where
a = 0 when studying the extensions of n-sequences which end in zero.
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4 New Results

We are now in a position to prove two new results on extendability. First, we
state a necessary condition for extendability.

Theorem 21 (Necessary Condition for Extendability). Let {γk}nk=0 be a real
sequence and let gn ∼ {γk}nk=0. Suppose gn(x) = (x + a)jq(x), where a ̸= 0,
j ≥ 2, q ∈ Hn, and deg gn = m < n. If gn+1 ∈ Hn, then gn+1(−a) = 0.

Proof. Without loss of generality, take j = 2 (higher multiplicities of the root
at −a can be subsumed in q). Now, with the integral representation in mind,
we compute the reverse of the nth Jensen polynomial.

g∗n(x) = xn−m(ax+ 1)2q∗(x)

We are now able to apply the integral representation to get the following:

g∗n+1(x) = (n+ 1)

∫ x

0

g∗n(t)dt =
n+ 1

s2

∫ x

0

tn−m(t+ s)2q∗(t)dt

where s = 1/a. (Note that we integrate from 0 because deg gn < n.) We
now expand g∗n+1 in a Taylor series about x = −s.

g∗n+1(x) =

n+1∑
k=0

g
∗(k)
n+1(−s)

k!
(x+ s)k

By the integral representation, it is clear that g
∗(k)
n+1(−s) = 0 for k = 1, 2.

Hence, we have

g∗n+1(x) = g∗n+1(−s) +

n+1∑
k=3

g
∗(k)
n+1(−s)

k!
(x+ s)k

Thus, by Lemma 4, if g∗n+1(−s) ̸= 0, then g∗n+1 is not hyperbolic, which
implies gn+1 /∈ Hn+1. Equivalent, if gn+1 ∈ Hn+1, then g∗n+1(−s) = 0, which
implies gn+1(−a) = 0.

We now state a sufficient condition for extendability:

Theorem 22 (Sufficient Condition for Extendability). Let {γk}nk=0 be a real
sequence and let gn ∼ {γk}nk=0. Suppose gn(x) = (x + a)jq(x), where a ̸= 0,
j ≥ 2, q ∈ Hn, and deg gn = m < n. If gn+1(−a) = 0 and m − j ≤ 2, then
gn+1 ∈ Hn.

Proof. Similar to the above proof, let s = 1/a. We have

g∗n(x) = xn−m(ax+ 1)jq∗(x)

By the integral representation, we have

g∗n+1(x) = (n+ 1)

∫ x

0

g∗n(t)dt =
n+ 1

sj

∫ x

0

tn−m(t+ s)jq∗(t)dt
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From this, it is clear that g
∗(k)
n+1(−s) = 0 for k = 1, 2, . . . , j, and that

g
∗(k)
n+1(0) = 0 for k = 1, 2, . . . ,m − n + 1. We now expand g∗n+1 as a Taylor
series about 0 and −s:

g∗n+1(x) = g∗n+1(−s) + (x+ s)j+1
n+1∑

k=j+1

g
∗(k)
n+1(−s)

k!
xk−j−1

and

g∗n+1(x) = g∗n+1(0) + xm−n+1
n+1∑

k=m−n+1

g
∗(k)
n+1(0)

k!
xk−j−1

We know that g∗n+1(0) = 0 directly from the integral representation; hence,
g∗n+1 has a root of multiplicity at least m−n+1 at 0. Furthermore, if we assume
that g∗n+1(−s) = 0, then the above shows that g∗n+1 has a root of multiplicity
at least j + 1 at −s. We know from the fundamental theorem of algebra that
g∗n+1 has exactly n+ 1 roots, counting multiplicities. Hence, g∗n+1 has at most
(n + 1) − (j + 1) − (n − m − 1) = m − j − 1 non-real roots. In particular, if
m−j ≤ 2, then g∗n+1 has at most 1 non-real root. However,the non-real roots of
real polynomials must come in conjugate pairs; hence, under this assumption,
g∗n+1 is hyperbolic.

Finally, the integral representation shows that g∗n+1 does not have any roots
on the positive real axis. It follows that g∗n+1 ∈ Hn, which implies gn+1 ∈ Hn.

Together, these theorems provide new necessary and sufficient conditions for
the extendability of n-sequences.
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