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The goal of this paper is to present an overview of the theory of Lie algebra
cohomology and show some its ramifications. For the latter, we will prove two
major theorems of Lie theory via cohomology of Lie algebras. In particular, we
will establish two lemmas due to Whitehead regarding the cohomology groups
of semisimple Lie algebras and use these to deduce the theorems due to Weyl
and Levi-Mal’cev, which describe the sturcture of semisimple Lie algebra. In
order to do this, we need to construct a cohomology theory for Lie algebras.

Just as Lie algebras give us a way to study Lie groups in a purely algebraic
setting, Lie algebra cohomology gives us a purely algebraic way of studying the
cohomology of the underlying topological space of a Lie group under the right
conditions. This follows from a result due to Chevalley and Eilenberg, which
says that the standard real cohomology of the underlying topological space of
a compact connected Lie group is isomorphic to the real cohomology of its Lie
algebra, to be defined below [1]. Thus, we will develop the general theory of Lie
algebra cohomology algebraically and then study semisimple Lie algebras as a
special case.

1 Theoretical Introduction

We start with some basic algebraic definitions. Let g be a vector space over
a field k. Define [ , ] : g × g → g such that [ , ] is bilinear and satisfies the
following identities:

[x, x] = 0, x ∈ g

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0, x, y, z ∈ g

Then g together with [ , ] is called a Lie algebra with Lie bracket [ , ]. A
Lie algebra homomorphism is then a linear map f : g → h which preserves Lie
brackets, i.e. f([x, y]) = [f(x), f(y)]. A Lie subalgebra of g is a linear subspace
of g which is closed under the Lie bracket. A Lie ideal of g is a Lie subalgebra h
such that [x, h] ∈ h for all x ∈ g and h ∈ h. Lie ideals allow us to define quotient
Lie algebras in the usual way. A Lie algebra (or a subalgebra or ideal) is called
abelian if [x, y] = 0 for all x, y ∈ g.
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1.1 Group Cohomology

Before defining Lie algebra cohomology, it is natural to define group cohomology,
since the former construction is directly analogous to the latter. Recall that in
order to define a cohomology theory for groups, we pass from a group G to the
group ring ZG by imposing a natural ring structure on G. [2, Chapter 6]. This
allows us to define G-modules as ZG-modules. Then for any G-module A, we
define the nth cohomology group of G with coefficients in A to be

Hn(G,A) = ExtnG(Z, A) = Rn(HomG(Z, A))

i.e. the nth right derived functor of the group of ZG-module homomorphisms
from Z to A. Here, Z denotes the trivial G-module.

Explictly, the construction of the homology groups proceeds as follows: Form
a projective resolution P of Z over ZG

P : · · · → P1 → P0 → Z → 0

i.e. an exact sequence in which Pk is projective as a G-module for all k.
Now, form the cochain complex

HomG(P,A) : 0 → HomG(P0, A) → HomG(P1, A) → . . .

where we dualize P and remove the Z term. The nth homology of this
complex is the ExtnG(Z, A), i.e. the nth cohomology of G with coefficients in A.

In order to define cohomology of groups in this way, we needed to extend
groups in a natural way to rings, over which we can define modules and chain
complexes. We wish to make an analogous construction for Lie algebras. In this
case, we will extend Lie algebras in a natural way to (associative) algebras, so
we can define the notion of a g-module, where g is a Lie group. First, note that
the naturality of the construction G → ZG is characterized by the following
adjunction:

Theorem 1. Let U : Rng → Grp be the functor which maps each ring (with
unity) to its group of units. Then the functor Z(−) : Grp → Rng, G 7→ ZG,
which maps each group to its group ring, is a left adjoint of U .

Proof. Let G be a group and R a ring with unity. Let f : G → U(R) be a group
homomorphism. Define f ′ : ZG → R by extending f linearly, i.e.

f ′

(∑
i

cix

)
=
∑
i

cif(x)

for ci ∈ Z (only finitely many nonzero) and x ∈ G. Multiplication in ZG is
given by the operation in G, so f ′ preserves multiplication by assumption. Thus,
f ′ is a ring homomorphism. Thus, we can extend each group homomorphism
f : G → U(R) to a ring homomorphism f ′ : ZG → R. It is clear that we
can also restrict ring homomorphisms f : Z(G) → R to group homomorphisms
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f ′′ : G → U(R), and that these processes are inverses, i.e. f ′ ◦ f ′′ = idZG and
f ′′ ◦ f ′ = idG. Thus, we have a bijection

Hom(ZG,R) ∼= Hom(G,U(R))

Naturality follows from the fact that Z(f(G)) = f ′(Z(G)) and U(f(R)) =
f ′′(U(R)). This establishes the desired adjunction.

1.2 The Universal Enveloping Algebra

We now make a similar construction for a Lie algebra g. First, define a functor
L : Alg → LieAlg by defining the Lie bracket [ , ] on L(A) in the classical way,
i.e. [x, y] = xy − yx for all x, y ∈ A. It is well-known that this is a Lie bracket.
We now construct a left adjoint to U . To do this, let g be a Lie algebra, let V
be its underlying vector space, and define the tensor algebra TV to be

TV =

∞⊕
n=0

V ⊗n

where V ⊗n = V ⊗V ⊗ · · ·⊗V is the n-fold tensor product of V over k, with
multiplication defined by

(x1 ⊗ · · · ⊗ xn)(y1 ⊗ · · · ⊗ yn) = x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yn

It is clear with this definition that TV is a graded associative algebra. Con-
sider the ideal I ⊂ TV generated by elements of the form

x⊗ y − y ⊗ x− [x, y], x, y ∈ g

Now form the quotient Ug = TV/I. Note that the relation which generates
I ensures that [x, y] = x ⊗ y − y ⊗ x in Ug (where each term in this identity
stands for its equivalence class in the quotient), which is made to be analogous
to the classical Lie bracket defined above, [x, y] = xy − yx. We call Ug the
universal enveloping algebra of g and claim it is the desired left adjoint to L.

Theorem 2. U(−) : LieAlg → Alg is left adjoint to L : Alg → LieAlg.

Proof. Let A be an algebra and g a Lie algebra. Let f : g → L(A) be a Lie
algebra homomorphism. We extend this to an algebra homomorphism f ′ : Tg →
A by letting f ′(x⊗y) = f(x)f(y) for all x, y ∈ g. This defines f ′(x) for all x ∈ Tg
by induction. Now, since f is a Lie algebra homomorphism, it preserves Lie
brackets. Thus, f ′(x⊗y−y⊗x−[x, y]) = f(x)f(y)−f(y)f(x)−[f(x), f(y)] = 0,
since [x, y] = xy − yx on L(A). (We now see explicitly why I was defined
in this way.) Hence, f ′ vanishes on I, and consequently induces an algebra
homomorphism f ′′ : Ug → A. Uniquess and naturality follow in the same way
as above. The result follows.
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The important part of this theorem for our purposes is the fact that Lie
algebra homomorphisms into L(A) can be uniquely extended to algebra homo-
morphisms on the universal enveloping algebra. If f : g → L(A) is a Lie algebra
homomorphism, let f ′ : Ug → A denote this extension.

Now, let A be a vector space over k with a Lie algebra homomorphism
ϕ : g → L(End(A)). Using the observation above, we have a unique extension
ϕ′ : Ug → End(A). This gives us a Ug action on A and makes A into a Ug-
module. We thus say that A is a g-module and call ϕ a g-action on A. The
Lie algebra homomorphism condition ensures us that ϕ([x, y]) = [ϕ(x), ϕ(y)] =
ϕ(x)ϕ(y)− ϕ(y)ϕ(x).

Note that in this case, L(End(A)) is exactly the general linear Lie algebra
of A, i.e. gl(A). Thus, g-actions on vector spaces are exactly Lie algebra rep-
resentations. Note that from this we recover the usual definition of the adjoint
representation of a Lie algebra, i.e.

ad : g → gl(g), x 7→ (y → [x, y])

This shows us that each Lie algebra is a module over itself with action given
by its adjoint representation. This gives us a very natural and common example
of a g-module.

Another simple but important example is that of a trivial g-module. This
is any g-module with a trivial representation, i.e. ϕ(x)(a) = 0 for all x ∈ g and
a ∈ A. This representation has a trivial Lie bracket, so a trivial g-module is
just a vector space over k, and conversely, any vector space over k can be given
a trivial Lie bracket and thus regarded as a trivial g-module for any Lie algebra
g.

1.3 Lie Algebra Cohomology

We are now ready to define the cohomology of Lie algebras. We will adopt
a similar convention to group cohomology and write g in place of Ug when
referring to Hom or Ext functors over g-modules. Using this convention, we
define the nth cohomology group of g with coefficients in a g-module A by

Hn(g, A) = Extng (k,A)

where k plays the role of Z in the theory of group cohomology, i.e. of a trivial
g-module. Note that Hn(g, A) has a natural g-module structure inherited from
the g-module structure of k and its resolutions (so in particular, they are all
vector spaces over k), but in the results that follow, we will only be concerned
with the underlying group structure.

The computation of these cohomology groups from this definition is directly
anlaogous to the procedure outlined above for groups. However, in the case of
Lie algebras, there is a natural way of constructing projective resolutions that
greatly simply the computation. This is given by the exterior algebra of the a
vector space. We outline this construction below for general vector spaces.
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Let V be a vector space over k. The exterior algebra of V will be a graded
algebra related to the tensor algebra defined above. Start by considering the
nth tensor power V ⊗n of V . Let I be the ideal of V ⊗n generated by vectors of
the form x1 ⊗ x2 ⊗ · · · ⊗ xn where xi = xj for some i ̸= j. Let V ∧n = V ⊗n/I.
We call V ∧n the nth exterior power of V .

We write x1 ∧ x2 ∧ · · · ∧ xn for the image of x1 ⊗ x2 ⊗ · · · ⊗ xn under the
quotient map. This defines an alternating multilinear product (via the universal
property of the tensor product)

∧
: V n → V ∧n given by (x1, x2, . . . , xn) 7→

x1 ∧x2 ∧ · · · ∧xn. Alternating in this case means that xi ∧xj = −xj ∧xi for all
xi, xj ∈ V , which is equivalent to xi ∧ xi = 0 for all xi ∈ V , and generalizations
of these properties to higher exterior powers follow by induction. Note also that
V ∧0 = k and V ∧1 = V . These follow immediately from the same relations on
the tensor powers.

We now define the exterior algebra of V to be

∧∗
V =

∞⊕
n=0

V ∧n

It follows from the above properties that
∧∗

V is an anti-commutative graded
algebra.

We now return to Lie algebra cohomology. Let V be the underlying vector
space of a Lie algebra g over k. Now form the collection of g-modules Cn =
Ug⊗ V ∧n.

From this, we form the sequence

C : · · · → C2
d2−→ C1

d1−→ C0
ϵ−→ k → 0

where ϵ : C0 = Ug → k is the unique homomorphism induced by the trivial
representation g → gl(k) (via the adjunction in theorem 2), and

dn(x1 ∧ · · · ∧ xn) =

n∑
i=1

(−1)i+1xi ⊗ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn

+
∑

1≤i<j≤n

(−1)i+j [xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn

where a hat denotes that the element is removed from the product. Note that
it is sufficient to define dn on V ∧n since this extends uniquely to Cn = Ug⊗V ∧n

by linearity. These maps are g-module homomorphisms by construction.
We can easily see that each Cn is a free g-module, i.e. a direct sum of Ug.

Explicitly, since V ∧n is a vector space, we can choose a basis {vi} for V ∧n and
write

Cn = Ug⊗ V ∧n =
⊕
i

Ug⊗ vi
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which is clearly isomorphic to a direct sum of Ug, since g acts trivially on
V ∧n. Since free modules are projective, it follows that each Cn is a projective
g-module.

Our goal is to use the sequence C to compute the cohomology groups
Hn(g, A). In order to do this, we need to show that C is a projective reso-
lution of k over g. This requires showing that C is exact. The proof of this
fact is long and computationally messy. Since we are more interested in the
ramifications of the theory, we refer to [3, Lemma 4.5, Theorem 4.6].

In summary,

Proposition 1. If Cn = Ug⊗ V ∧n, where V is the underlying vector space of
g, and dn : Cn → Cn−1 is given as above, then

C : · · · → C2
d2−→ C1

d1−→ C0
ϵ−→ k → 0

is a projective (indeed free) resolution of k over g.

We can thus use this resolution to compute the cohomology groups in the
same way as we did for groups, namely as the homology of the cochain complex
given by

Homg(P,A) : 0 → Homg(C0, A)
d∗
1−→ Homg(C1, A)

d∗
2−→ Homg(C2, A) → . . .

where d∗n is the induced coboundary map from dn. Also, since elements of
Homg(Ug⊗ V ∧n, A) correspond to alternating multilinear g-module homomor-
phisms gn → A, we simply write Homg(g

n, A) for brevity.

2 Applications to the Structure of Lie Algebras

The importance of this particular construction of the cohomology groups is
not in the proof that it works, but in the way it simplifies the computation of
cohomology groups for specific Lie algebras by furnishing a concrete boundary
map in terms of the vector space structure of the Lie algebra. To see some
applications of this fact, we focus our attention on a special case. First, we take
a brief detour to outline the essential aspects of the theory of semisimple Lie
algebras.

2.1 Semisimplicity

Let g be a finite dimensional Lie algebra over a field k of characteristic 0. For
brevity, we refer to Lie ideals of g simply as ideals. Let Dg = [g, g], and define
the collection of maps {Dk} inductively by Dng = [Dn−1g,Dn−1g]. it is clear
that Dn+1g ≤ Dng for all n ≥ 0 (with the convention D0g = g). We call the
sequence of Lie subalgebras {Dkg} the derived series of g. A Lie subalgebra h
of g is called solvable if its derived series terminates at 0, i.e. Dng = 0 for some
n. In this case, we call n the derived length of g. By the second isomoprhism
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theorem, the set of solvable ideals in g form a poset under containment in which
all ascending chains meet. It follows that there is a unique largest solvable ideal
in g. We call this the radical of g and denote it rad g. If rad g = 0, we say that
g is semisimple, i.e. the only solvable ideal of g is trivial.

Now, let A be a finite dimensional g-module with g-action given by ρ : g →
gl(A). Let β : g× g → k be the bilinear form given by

βρ(x, y) = Tr(ρ(x)ρ(y))

We note that this is a generalization of the Killing form: If we let g be a
g-module with action given by the adjoint representation, then we recover

βad(x, y) = Tr(ad(x) ad(y))

This is called the Killing form of g. For shorthand, write ⟨x, y⟩ = βad(x, y).
Recall the following important result, known as Cartan’s criterion for solv-

ability :

Proposition 2. A Lie algebra g is solvable if and only if ⟨x, [y, z]⟩ = 0 for all
x, y, z ∈ g.

In particular, a Lie algebra is solvable if its Killing form is identically zero.
This result can be found in Lie Groups, Lie Algebras, and their Representation
by Varadarajan.

We now seek to prove the following important theorem. In what follows, we
will assume that A is a finite dimensional g-module for a finite-dimensinal Lie
algebra g over a field k of characteristic 0.

Theorem 3. Let A be a g-module with g-action given by ρ : g → gl(A). Let
h = ker ρ. If g is semisimple, then βρ is non-degenerate on h⊥ × h⊥.

In this theorem, h⊥ is the orthogonal complement of h with respect to βρ.
Before proving this theorem, we observe an important corollary:

Corollary 1. If A is a g-module with faithful g-action ρ (i.e. ρ is injective),
then βρ is non-degenerate on g× g. .

Proof. If ρ is injective, then h = ker ρ = 0, hence h⊥ = g.

We now proceed to the proof of the theorem. First, we need a lemma:

Lemma 1. Let g be semisimple and h an ideal in g. Then g = h⊕ h⊥.

Proof. First, note that, from elementary linear algebra, dim g = dim h+dim h⊥.
Thus, the result follows as long as h and h⊥ have non-trivial intersection. As-
sume h∩ h⊥ ̸= 0. Then ⟨x, x′⟩ = 0 for all x ∈ h and x′ ∈ h⊥. Thus, by Cartan’s
criterion for solvability, h ∩ h⊥ is solvable, contradicting the assumption that g
is semisimple.
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This lemma allows us to form the split short exact sequence

0 → h → g → g/h → 0

That is, g = h⊕ g/h. It follows that each of h and g/h are semisimple when
g is.

Now, recall the conditions of the theorem. h = ker ρ is an ideal of g and we
can thus write g = h⊕ h⊥. Let β̄ρ : h⊥ × h⊥ → k denote the restriction of βρ to
h⊥ × h⊥. Let m = ker β̄ρ(−, h⊥). m is an ideal of g.

Choose any x ∈ [m, h⊥]. Then we can see that ρ(x) is nilpotent by con-
sidering Tr(ρ(x)r), where r is a replica of ρ(x). [4, Lemma 3.9.5]. It follows
that p([m, h⊥]) is a nilpotent ideal of ρ(h⊥). But the above shows that h⊥ is
seisimple, hence so is ρ(h⊥) and p([m, h⊥]). It follows that p([m, h⊥]) = 0. Since
ρ is injective on h⊥, this implies [m, h⊥] = 0. Thus, m ≤ Z(h⊥) = 0, since h⊥ is
semisimple, so m = 0 and the result follows.

2.2 First Calculations

We are now in a position to exploit the bilinear form βρ to prove substantial
results about the cohomology of semisimple Lie algebras. We start with the fol-
lowing, which asserts the triviality of all cohomology groups for simple modules
over semisimple Lie algebras.

Theorem 4. Let A be a g-module with non-trivial g-action given by ρ : g →
gl(A). If A is simple and g is semisimple, then Hn(g, A) = 0 for all n.

Proof. Let h = (ker ρ)⊥. We assumed ρ is non-trivial, so h is non-zero. The
above theorem then gives us that βρ is non-degenerate on h× h. Thus, we can
choose bases {ei} and {e′j} for h over k such that βρ(ei, e

′
j) = δij .

For g-modues M and N , let fM : M → M be the g-module homomorphism
given by

x 7→
∑
i

eie
′
ix, x ∈ M

To show that fM is a g-module, the only thing which is unclear is whether
it preserves scalar multiplication in Ug. Given the definition of the map,
this amounts to proving that, for all x ∈ Ug, x commutes with

∑
i eie

′
i, i.e.

x
∑

i eie
′
i =

∑
i eie

′
ix.

To show this, we first rewrite each side of the equation as follows:

x
∑
i

eie
′
i =

∑
i

([x, ei]e
′
i + eixe

′
i)

∑
i

eie
′
ix =

∑
i

(eixe
′
i − ei[x, e

′
i])

Now, expand each of the Lie brackets over the bases, i.e. [ei, x] =
∑

k cikek
and [x, e′i] =

∑
k dikek. Then, recalling that βρ(ei, e

′
j) = δij , we have
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cij = βρ([ei, x], e
′
j) = βρ(ei, [x, e

′
j ]) = dji

Expanding the Lie brackets over the bases in this way and equating cij with
dji, we get ∑

i

([x, ei]e
′
i + eixe

′
i) =

∑
i

(eixe
′
i − ei[x, e

′
i])

which shows that x
∑

i eie
′
i =

∑
i eie

′
ix. Since x was arbitrary, it follows that

fM is indeed a g-module homomorphism.
Now, we make a similar construction for the modules {Cn}. Let C be the

projective resolution furnished of k over g furnished in proposition 1. Then
τ : C → C given by τn = fCn

defines a chain map. Explicitly,

τn : Cn → Cn, x1 ∧ x2 ∧ · · · ∧ xn 7→
∑
i

eie
′
i ⊗ x1 ∧ x2 ∧ · · · ∧ xn

It is clear from the above computation that τn is a g-module homomorphism
for all n. The additional chain map condition says that τn−1dn = dnτn for
all n. We can deduce this from a more general property: For any g-module
homomorphism ϕ : M → N , we have fNϕ = ϕfM . This follows immediately
from the fact that each of the maps involved is a g-module homomorphism. It
follows that τ is indeed a chain map.

Now, consider the map fA : A → A. The maps fA and fCn each induce a
map Hom(Cn, A) → Hom(Cn, A). We can write these explicitly as follows: If
ϕ : Cn → A is a g-module homomoprhism, then

f∗
A : ϕ 7→ fAϕ

τ∗n : ϕ 7→ ϕτn

It follows from the above observation that fAϕ = ϕτn, hence f∗
A = τ∗n for all

n. Furthermore, each of these maps induce a map on the cohomology groups
Hn(g, A) → Hn(g, A). The fact that they are equal shows that they induce the
same map; call it f∗ : Hn(g, A) → Hn(g, A).

Now, A simple implies that fA is either an automorphism of A or trivial.
However, it is clearly not trivial by construction; hence it is an automorphism
of A. It follows that f∗ is an isomorphism. Thus, if we can show that f∗ is
trivial, it will follow that Hn(g, A) = 0 for all n, as claimed.

To do this, we construct a chain homomotopy between τ and the trivial map.
Define a g-module homomoprhism hn : Cn → Cn+1 by

x1 ∧ x2 ∧ · · · ∧ xn 7→
∑
k

ek ⊗ e′k ∧ x1 ∧ x2 ∧ · · · ∧ xn
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This is clearly a g-module homomorphism by construction. To show that hn

is a chain homotopy, we need dn+1hn + hn−1dn = τn, where h−1 is defined to
be trivial. We compute

(dn+1hn + hn−1dn)(x1 ∧ · · · ∧ xn) =
∑
k

eke
′
k ⊗ x1 ∧ · · · ∧ xn

+
∑
i,k

(−1)iek ⊗ [e′k, xi] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn

+
∑
i,k

(−1)iekxi ⊗ e′k ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn

+
∑
i,k

(−1)i+1xiek ⊗ e′k ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn

+
∑
k,i<j

(−1)i+jek ⊗ [xi, xj ] ∧ e′k ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn

+
∑
k,i<j

(−1)i+jek ⊗ e′k ∧ [xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn

= τn(x1 ∧ · · · ∧ xn)

In this massive sum of sums, every term except after the first sum cancels.
The theorem follows.

2.3 Whitehead’s Lemmas

We now proceed to the main results of this paper, namely the theorems due
to Weyl and Levi-Malcev. Respectively, these theorems say that every finite
dimensional module over a semisimple Lie algebra is a direct sum of simple
modules, and that every finite-dimensional Lie algebra is the split extension of
a semisimple Lie algebra by its radical. The first of these theorems implies that
every finite-dimensional representation of a semisimple Lie algebra is completely
reducible; the second allows you to decompose any finite-dimensional Lie alge-
bra into a semisimple Lie subalgebra and a solvable Lie subalgebra (specifically,
its radical). These theorems will follow as a result of two lemmas due to White-
head, which state that the first and second cohomology groups of modules over
semisimple Lie algebras are trivial. In these computations, we will reduce to the
case of simple modules, which was proven above. Once again, all modules and
Lie algebras will be finite-dimensional throughout, and all fields of characteristic
0.

Theorem 5. Let A be a g-module with non-trivial g-action. If g is semisimple,
then H1(g, A) = 0.
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Proof. Suppose the theorem is false. Then there exists a g-module A such that
H1(g, A) is non-trivial. Let A be a g-module of minimal dimension with this
property. If A is simple, then we are done by the previous theorem. Thus,
assume A is not simple. Then A has a non-trivial proper submodule (ideal) A′.
Form the canonical short exact sequence

0 → A′ → A → A/A′ → 0

By basic homological algebra, there is an associated long exact sequence of
cohomology groups

· · · → H1(g, A′) → H1(g, A) → H1(g, A/A′) → H2(g, A′) → . . .

But we chose A to be the g-module of minimal dimension such that H1(g, A)
was non-trivial, and dimA′ and dimA/A′ are both strictly less than dimA, so
H1(g, A′) = H1(g, A/A′) = 0. Thus, the above sequence contains

· · · → 0 → H1(g, A) → 0 → . . .

It follows immediately from exactness that H1(g, A) = 0.

Theorem 6. Let A be a g-module with non-trivial g-action. If g is semisimple,
then H2(g, A) = 0.

Proof. The proof will proceed as the previous one. Suppose the theorem is false.
Let A be the g-module of minimal dimension such that H2(g, A) ̸= 0. If A is
simple, then we are done by theorem 4. Thus, assume A is not simple. Let
A′ be a non-trivial proper submodule of A and form the canonical short exact
sequence

0 → A′ → A → A/A′ → 0

and the associated long exact sequence

· · · → H2(g, A′) → H2(g, A) → H2(g, A/A′) → H3(g, A′) → . . .

In the same way as above, we get H2(g, A′) = H2(g, A/A′) = 0, which
implies H2(g, A) = 0.

Thus, we have shown that the first and second cohomology groups of a
semisimple Lie algebra are trivial over non-simple modules and simple modules
with non-trivial g-action. If A is simple and has trivial g-action, then A = k, the
underlying field. Thus, in order to fully generalize these results to semisimple Lie
algebras, we have only to show that H1(g, k) = H2(g, k) = 0 for any semisimple
Lie algebra g. We compute these directly from the cochain complex
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Homg(P,A) : 0 → Homg(C0, A)
d∗
1−→ Homg(C1, A)

d∗
2−→ Homg(C2, A) → . . .

where Cn = Ug ⊗ V ∧n (recall proposition 1). Since we are only concerned
with the first and second cohomology groups, we investigate the sequence

0 → Homg(Ug, k)
d∗
1−→ Homg(g, k)

d∗
2−→ Homg(g

2, k)
d∗
3−→ . . .

Now, k as a g-module has trivial g-action, i.e. ρ(x)(a) = 0 for all x ∈ g and
a ∈ k. Now, by dualizing the definition of d1 above, we get

d∗1θ(a⊗ x) = ρ(x)θ(a), θ ∈ Homg(Ug, k)

so the condition that ρ is the trivial action is equivalent to the assertion that
im d∗1 = 0. Thus, H1(g, k) = ker d∗2. Similarly, we compute

d∗2θ(x1 ∧ x2) = ρ(x1)θ(x2)− ρ(x2)θ(x1)− θ([x1, x2]) = −θ([x1, x2])

for θ ∈ Homg(g, k). Note that the first two terms are zero because the action
is trivial.

The kernel of d∗2 is therefore the subspace of maps θ ∈ Homg(g, k) satisfying
θ([x, y]) = ρ(x1)θ(x2) − ρ(x2)θ(x1) = 0. These are exactly the Lie algebra
homomorphisms θ : g → k with trivial image; in other words, the Lie algebra
homomorphisms θ : gab → k, where gab = g/[g, g] is the abelianization of
g. Thus, we conclude that H1(g, k) = Homg(gab, k). But gab is an abelian
ideal of g, hence solvable. Thus, since g is semisimple, gab = 0, and we get
H1(g, k) = Homg(gab, k) = 0, as desired.

Now, we compute H2(g, k) = ker d∗3/ im d∗2. The computation above shows
that im d∗2 is the subspace of maps in Homg(g

2, k) generated by θ([x, y]) for
θ ∈ Homg(g, k) and x, y ∈ g. Now, to find ker d∗3, we compute

d∗3θ(x1 ∧ x2 ∧ x3) = ρ(x1)θ(x2 ∧ x3)− ρ(x2)θ(x1 ∧ x3) + ρ(x3)θ(x1 ∧ x2)

− θ([x1, x2] ∧ x3) + θ([x1, x3] ∧ x2)− θ([x2, x3] ∧ x1)

= θ([x1, x3] ∧ x2) + θ([x2, x1] ∧ x3) + θ([x3, x2] ∧ x1)

for θ ∈ Homg(g
2, k). Once again, the first three terms are zero because the

action is trivial. Thus, we see that the kernel of d∗3 is the subspace of maps
θ ∈ Homg(g

2, k) satisfying

θ([x1, x3] ∧ x2) + θ([x2, x1] ∧ x3) + θ([x3, x2] ∧ x1) = 0

Note that if our map is θ([x, y]), then this is exactly the Jacobi identity,
hence in particular it is satisfied by θ([x, y]). Conversely, any map satisfying this
identity must be a linear combination of maps of the form θ([x, y]). Therefore,
ker d∗3 = im d∗2, and it follows that H2(g, k) = 0, as desired.

We have therefore generalized the previous two theorems to the following:
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Proposition 3. Let A be a g-module. If g is semisimple, then H1(g, A) =
H2(g, A) = 0.

The assertions that the first and second cohomology groups are trivial under
these conditions are known as the Whitehead lemmas.

3 Main Structure Theorems

We now apply the Whitehead lemmas to prove two important structure theo-
rems about semisimple Lie algebras due to Weyl and Levi-Malcev. First, we
state Weyl’s theorem.

Theorem 7. Let A be a g-module. If g is semisimple, then A is a direct sum
of simple g-modules.

We reiterate that an equivalent statement in terms of representation the-
ory is that (finite-dimensional) representations of a semisimple Lie algebra are
completely reducible.

Proof. If dimA = 0, then there is nothing to prove. Assume we have the result
for dimA ≤ n. Let A be a g-module of dimension n+1. Let A′ be a non-trivial
proper submodule of A. Form the canonical short exact sequence

0 → A′ → A → A/A′

and the induced exact sequence

0 → Homg(A/A′, A′) → Homg(A,A′) → Homg(A
′, A′) → 0

(Note that the Hom functor is exact over fields.) Regarding each term in
this sequence as a g-module via the action (xϕ(a)) = xϕ(a) − ϕ(xa), x ∈ g,
a ∈ A,A′, or A/A′, we can form the long exact sequence of cohomology groups

0 → H0(g,Homg(A/A′, A′)) → H0(g,Homg(A,A′))

→ H0(g,Homg(A
′, A′)) → H1(g,Homg(A

′′, A′)) → . . .

We assumed that g is semisimple, so Whitehead’s first lemma shows that
H1(g,Homg(A

′′, A′)) = 0. Thus, we get a short exact sequence

0 → H0(g,Homg(A/A′, A′)) → H0(g,Homg(A,A′)) → H0(g,Homg(A
′, A′)) → 0

In particular, the map H0(g,Homg(A,A′)) → H0(g,Homg(A
′, A′)) is surjec-

tive. This induces a surjective homomorphism Homg(A,A′) → Homg(A
′, A′).

It follows that there is a g-module homomorphism ϕ : A → A′ which is the
identity on A′. In other words, ϕ is the left inverse of the inclusion i : A′ → A
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(the canonical map in the original short exact sequence). Thus, ϕ induces a
splitting of the sequence, from which it follows that A = A′ ⊕A/A′.

Since A′ is a proper submodule of A, dimA′ and dimA/A′ are each strictly
less than dimA. By our assumption, A′ and A/A′ each decompose into the
direct sum of simple g-modules. Therefore, the same is true of A. The result
follows by induction.

Before moving onto the second major theorem, we prove a lemma.

Lemma 2. Let A be a h-module and let g be an extension of h by A, i.e. a
short exact sequence 0 → A → g → h → 0 with abelian kernel. Then there is a
unique element of H2(h, A) corresponding to g.

Note that this is a special case of a bijective correspondence between Lie
algebra extensions 0 → A → g → h and H2(h, A), but we only need one
direction of this correspondence for our purposes.

Proof. Let ρ be the h-action on A, as usual. Let s : h → g be a section, i.e. a
linear map which is a right inverse of the projection g → h. Define h : h×h → A
by

h(x, y) = [sx, sy]− s[x, y], x, y ∈ h

It is clear that h is alternating and multilinear (since the Lie bracket has
each of these properties). Thus, we can regard h as a function in Homh(g

2, A).
Without loss of generality, we can let h define the Lie bracket on g, since the
section s : h → g describes g as the semi-direct product of A and h by h. That
is, ρ(x)(y) = h(x, y). Now, we compute

d∗3h(x1 ∧ x2 ∧ x3) = ρ(x1)h(x2 ∧ x3)− ρ(x2)h(x1 ∧ x3) + ρ(x3)h(x1 ∧ x2)

− h([x1, x2] ∧ x3) + h([x1, x3] ∧ x2)− h([x2, x3] ∧ x1)

= [sx1, [sx2, sx3]] + [sx2, [sx3, sx1]] + [sx3, [sx1, sx2]]

− s[x1, [x2, x3]] + s[x2, [x3, x1]] + s[x3, [x1, x2]] = 0

It is clear that the last expression equals zero by linearity. Thus, h ∈ ker d∗3.
It follows that h is an element of a cohomology class in H2(h, A). Now, suppose
we followed the same procedure for a different section r : h → g. Let k : h×h →
A be the associated 2-cochain cycle. Then

d∗2(r − s)(x1 ∧ x2 ∧ x3) = ρ(x1)(r − s)(x2)− ρ(x2)(r − s)(x1)− (r − s)([x1, x2])

= [rx1, rx2]− r[x1, x2] + [sx1, sx2]− s[x1, x2]

= k(x1 ∧ x2)− h(x1 ∧ x2)
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From this, it follows that sections with the same image under d∗2 give rise to
the same 2-cochain cycles. Therefore, to each such extension there corresponds
a unique element of H2(h, A).

We now state the theorem due to Levi-Malcev.

Theorem 8. Every finite-dimensional Lie algebra admits the following decom-
position: g = rad g⊕ g/ rad g

Proof. Let g be a finite-dimensional Lie algebra with radical rad g. Form the
canonical short exact sequence

0 → rad g → g → g/ rad g

It suffices to show that this sequence splits. Consider the diagram

0 rad g g g/ rad g 0

0 rad g/[rad g, rad g] g/[rad g, rad g] g/ rad g 0

The bottom row is clearly exact as well. Note that the first term is the
abelianization of rad g. Thus, the bottom row gives an extension of g/ rad g by
rad g/[rad g, rad g]. It follows from the lemma that there is a unique element
of H2(g/ rad g, rad g/[rad g, rad g]) to which it corresponds. But this group is
trivial by the second Whitehead lemma. Therefore, there must be only one such
extension. Since the split extension always exists, this sequence must split.

Assume rad g has derived length 1. Then [rad g, rad g] = 0, hence rad g is
abelian, and so the top row splits as well by the above. Now assume the result
is known for all Lie algebras with radical of derived length ≤ n. Consider the
case where rad g has derived length n+ 1.

Let s : g/ rad g → g/[rad g, rad g] be a splitting. Let h be the Lie subalgebra
of g such that im s = h/[rad g, rad g]. Form the canonical short exact sequence

0 → [rad g, rad g] → h → h/[rad g, rad g] → 0

Since rad g has derived length n+1, [rad g, rad g] has derived length n, hence
this sequence splits by the assumption. Let r : h/[rad g, rad g] be a splitting.
Now define q : g/[rad g, rad g] → g by q = rs. It is clear from construction that
q gives a splitting of the top row. The result follows by induction.

Thus, we have proved two major theorems regarding the structure of semisim-
ple Lie algebras via cohomology, specifically the triviality of the first and second
cohomology groups of modules over semisimple Lie algebras. It is natural to ask
whether higher cohomology groups are also trivial and what results we may be
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able to deduce from that. The answer to this question is negative, as demon-
strated by the following result due to Chevalley and Eilenberg. [1, Theorem
21.1].

Theorem 9. Let g be a semisimple Lie algebra. Then H3(g, k) ̸= 0.

Proof. Recall the Killing form ⟨ , ⟩ : g×g → k given by ⟨x, y⟩ = Tr(ad(x) ad(y)).
Define an alternating multilinear functional f : g× g× g → k by

f(x, y, z) = ⟨[x, y], z⟩

By construction (via the properties of the Lie bracket and Killing form),
f is a 3-cochain cycle. Now, for x ∈ g, we introduce the auxiliary function
ωx : Homg(g

3, k) → Homg(g
3, k) given by

ωxϕ(x1 ∧ · · · ∧ xn) =
∑
i

(−1)i+1ϕ([xi, x] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn)

Note that dk ∗ ωx = ωxd
∗
k for all k. We also have

ωxf(x1 ∧ x2 ∧ x3) = ⟨[[x1, x], x2], x3⟩ − ⟨[[x2, x], x1], x3⟩+ ⟨[[x3, x], x1], x2⟩
= 0

i.e. ωxf = 0 for all x ∈ g. We use this fact to compute

d∗4f(x1 ∧ x2 ∧ x3 ∧ x4) =
∑
i<j

(−1)i+jf([xi, xj ] ∧ xi′ ∧ xj′)

=
∑
i

ωxif(x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x3) = 0

Thus, f is a 3-cocycle. Assume f is a 3-cobondary. Then there is some
g ∈ Homg(g

2, k) such that d∗3g = f . The above observations then give us

d∗3ωxg = ωxd
∗
3g = ωxf = 0

Thus, ωxg is a 2-cocycle, by a similar calcluation to the one above. It follows
that g is also a 2-cocycle. Hence, d∗3g = f = 0. But f cannot be trivial, because
the Killing form is non-degenerate by the corollary to theorem 3 (since ad is
a faithful representation). Thus, we have a contradiction. Therefore, f is a
3-cocycle that is not a 3-coboundary. It follows that the cohomology class of f
is nontrivial, so H3(g, k) ̸= 0.
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4 Connection Between Lie Algebra Cohomology
and de Rahm Cohomology

The reader who is familiar with de Rahm cohomology probably observed some
similarity between it and the definition of the Lie algebra cohomology earlier in
this paper. In this section, we make this connection formal. In particular, we
will prove that the de Rahm cohomology of a compact connected Lie group is
isomorphic to the Lie algebra cohomology of its Lie algebra.

We will start by introducing Lie algebras from a different perspective. We let
G denote a topological group which is also a smooth manifold and for which the
group operation and inversion map are smooth. Then G is called a Lie group.
Let Te(G) denote the tangent space of G at the identity, and let Lr : G → G
denote the left translation x 7→ rx. Lr induces a map (Lr)∗ : Te(G) → Te(G),
which we call the differential or pushforward. Thus, if we fix Xe ∈ Te(G) and
consider the set of all Xr = (Lr)∗(Xe), this forms a left-invariant vector field X
on G which is uniquely determined by Xe. We can furthermore show that any
such vector field is smooth.

More generally, for any p-form ω on G, Lr induces a map on the space of p-
forms, namely (Lr)

∗(ω)(X1, . . . , Xp) = ω((Lr)∗(X1), . . . , (Lr)∗(Xp)), which we
call the pullback. We then call a p-form ω left invariant if it is fixed under the
map (Lr)

∗, i.e. (Lr)
∗(ω) = ω. It can be shown that the left-invariant p-forms

are in one-to-one correspondence with the p-forms on Te(G).
Next, observe that if we define the Lie bracket in the usual way, it preserves

left-invariance, i.e. [X,Y ] = XY − Y X is left-invariant whenever X and Y are.
Thus, the Lie bracket is well defined on Te(G). Thus, Te(G) together with the
Lie bracket [ , ] defines a Lie algebra. We call this the Lie algebra associated to
the Lie group G and denote it by g.

With this definition of the Lie algebra, we will need to modify the notation
for the differential map between forms slightly, but it will be essentially the
same as given above. We have, for a p-form ω,

dω(X0, . . . , Xp) =

p∑
i=0

(−1)iXi(ω(X0, . . . , X̂i, . . . , Xp))

+
∑

1≤i<j≤p

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp)

However, if ω and X0, . . . , Xp are left-invariant, then ω(X0, . . . , X̂i, . . . , Xp)

is constant, hence Xi(ω(X0, . . . , X̂i, . . . , Xp)) = 0, and the above formula re-
duces to

dω(X0, . . . , Xp) =
∑

1≤i<j≤p

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp)

17



Let X1, . . . , Xn be a basis for g and ω1, . . . , ωn be the 1-forms dual to this
basis, i.e. ωi(Xj) = δij , where δij is the Kronecker delta. Let ω = ω1 ∧ · · · ∧ωn.
We see that ω is a left-invariant n-form. Now, for f : G → R smooth, let∫

G

fdg =

∫
G

fω

This is called the Haar integral. It inherets the property of left-invariance
from ω. Namely,∫

G

f(rσ)dg =

∫
G

f ◦ Lrdg =

∫
G

f ◦ Lrω =

∫
G

fω =

∫
G

f(σ)dg

Furthermore, if G is compact, we can show that the Haar integral is right-
invariant as well. Now let M be a smooth manifold and define a smooth action
G×M → M of G on M by (g, x) 7→ tg(x). A p-form ω is said to be invariant tif
t∗g(ω) = ω for all g ∈ G. Let Ω(M) denote the set of forms on M , and ΩG(M)
denote the set of invariant forms on M with respect to the action of G. We now
define a map I : Ω(M) → ΩG(M) by

I(ω)(X1, . . . , Xp) =

∫
t∗gω(X1, . . . , Xp)dg =

∫
ω((tg)∗X1, . . . , (tg)∗Xp)dg

With this definition, by the right-invariance of the Haar integral, we compute

t∗h(I(ω))(X1, . . . , Xp) = I(ω)((th)∗X1, . . . , (th)∗Xp)

=

∫
ω((tg)∗(th)∗X1, . . . , (tg)∗(th)∗Xp)dg

=

∫
ω((tgh)∗X1, . . . , (tgh)∗Xp)dg

=

∫
ω((tg)∗X1, . . . , (tg)∗Xp)dg

= I(ω)

This shows that I(ω) is itself a left-invariant form on M for all ω ∈ ΩG(M).
On the other hand, assume G is compact. Then we can normalize the Haar
integral so that ∫

G

dg = 1

Now, for ω ∈ ΩG(M), we use left-invariance to compute
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I(ω)(X1, . . . , Xp) =

∫
t∗g(ω)(X1, . . . , Xp)dg

=

∫
ω(X1, . . . , Xp)dg

= ω(X1, . . . , Xp)

∫
G

dg

= ω(X1, . . . , Xp)

Note that G acts by automorphisms on Hp(M,R). Let Hp(M,R)G denote
the set of fixed points under this action.

Now let J : ΩG(M) ↪→ Ω(M) be the natural inclusion. The above compu-
tation shows that integrating left-invariant forms via I results in left-invariant
forms. In other words, the composition IJ : ΩG(M) → ΩG(M) is the identity.
Note that I and J induce homomorphisms in cohomology, namely

I∗ : Hp(M,R)G → Hp(ΩG(M)) and J∗ : Hp(ΩG(M)) → Hp(M,R)G

Since IJ = 1, we have I∗J∗ = 1 as well. Therefore, I∗ is surjective and J∗

is injective. Thus, if we show that J∗ is surjective, then we will have shown the
following:

Theorem 10. Let G be a compact Lie group. Then the inclusion J : ΩG(M) ↪→
Ω(M) induces an isomprhism J∗ : Hp(ΩG(M)) ∼= Hp(M,R)G.

Proof. As shown just above, it suffices to how that J∗ is onto. Choose α =
[[ω]] ∈ H∗(M,R)G. Let g ∈ G. Sincne [[ω]] is left-invariant under G, ω and
t∗g(ω) are in the same cohomology class. In other words, ω−t∗g(ω) = dη for some
(p− 1)-form η, depending on g. Therefore, for any smooth p-cycle c ∈ Cp(M),
we have, applying Stoke’s theorem,∫

c

ω −
∫
c

t∗g(ω) =

∫
c

dη =

∫
∂c

η = 0

It follows that
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∫
c

I(ω) =

∫
c

∫
G

t∗g(ω)dg

=

∫
G

∫
c

t∗g(ω)dg

=

∫
G

∫
c

ωdg

=

∫
c

ω

∫
G

dg

=

∫
c

ω

using the compactness of G to normalize the integral as above. Therefore,
for every p-cycle c, we have ∫

c

(I(ω)− ω) = 0

It follows that [[I(ω)]] = [[ω]] in H∗(M,R). Therefore, J∗I ∗( α) = α and
the result follows.

This theorem gives us the immediate corollary:

Corollary 2. Let G be a compact connected Lie group. Then Hp(G,R) is
isomorphic to Hp(g,R).

This follows from the following two observations: First, as stated above, g
is exactly Te(G) together with the Lie bracket, hence Hp(g,R) is exactly the
cohomology of the complex of invariant forms with differential given above.
Second, when G is connected, Hp(M,R)G = Hp(G,R), since then tg is the
identity on M for each g in G.
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