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One of the most important developments in number theory in recent times
was the discovery of how to associate certain elliptic curves to certain modular
forms. More specifically, there is a correspondence between elliptic curves over
Q and weight 2 eigenforms. This is known as the modularity theorem. In this
paper, we will build up the necessary background to understand the statement of
the theorem. Furthermore, we will describe one direction of this correspondence,
i.e. how an elliptic curve arises given a normalized weight 2 newform. In doing
so, we will also develop a more refined notion of modularity via the language of
Jacobians.

1 Preliminary Notions

We will begin with some basic definitions. The idea of a modular form is a
function with “nice” symmetry properties. The relevant notion of symmetry is
captured in a certain class of subgroups of SL2(Z) called congruence subgroups.

Definition 1. The principle congruence subgroup Γ(N) of level N is

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
=

(
1 0
0 1

)
(mod N)

}
Definition 2. A subgroup of SL2(Z) is called a congruence subgroup of level N
if Γ(N) ⊂ Γ for some N ∈ Z+.

There are many examples of congruence subgroups, but for our purposes, it
suffices to focus on one,

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
=

(
∗ ∗
0 ∗

)
(mod N)

}
These congruence subgroups act on the upper half plane by left multiplica-

tion. We then consider the orbit space of this action.

Definition 3. The modular curve X(Γ) of level N with respect to Γ is

X(Γ) = Γ/H∗, H∗ = H ∪ Q ∪ {∞}
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In the important special case when, Γ = Γ0(N), we use the notationX0(N) =
X(Γ0(N)).

We’ll take a moment to unpack this definition and understand the geometry.
Consider X(Γ) as a topological space with the quotient topology induced by
π : H∗ → X(Γ). Since Γ is finite index in SL2(Z) for any congruence subgroup
Γ, its action onH is properly discontinuous. This ensures thatX(Γ) is Hausdorff
as a topological space. We can then define charts on X(Γ) that make it into a
Riemann surface. The addition of the rational points and the point at infinity,
in the definition of H∗, serve the purpose of compactification.

Proposition 1. X(Γ) has the structure of a compact Riemann surface.

From here, we have enough background to state the first version of the
modularity theorem, in terms of holomorphic maps of Riemann surfaces.

Theorem 1. Let E be a complex elliptic curve with j(E) ∈ Q. Then for some
positive integer N , there exists a surjective holomorphic function of compact
Riemann surfaces

X0(N) → E

This is a powerful result, but it does not elucidate where the elliptic curve
comes from, nor how modular forms fit into the picture. For these purposes, we
will need to build up more material.

2 Modular Forms

Let f : H → C be a meromorphic function on the upper half plane. For some
k ∈ Z and some congruence subgroup Γ, define the weight k operator [γ]k by

(f [γ]k)(τ) = (cτ + d)−kf(γ(τ))

for γ =

(
a b
c d

)
∈ Γ and τ ∈ H. If f is invariant under this operator, i.e.

f [γ]k = f for all γ ∈ Γ, then we say that f is weakly modular of weight k with
respect to Γ.

One can show that a weakly modular holomorphic function has a Fourier
expansion on the punctured disc D/{0}, D = {z ∈ C : |z| < 1}, given by

f(τ) =

∞∑
n=−∞

anq
n
h

for qh = e2πiτ/h. Suppose we can extend f holomorphically to the full disc
D. Then we say f is holomorphic at ∞, and we conclude that the Fourier
expansion of f reduces to

f(τ) =

∞∑
n=0

anq
n
h
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We call this the q expansion of f . We are now able to define what we mean
by a modular form with respect to a congruence subgroup.

Definition 4. Let f : H → C. Suppose Γ is a congruence subgroup and k ∈ Z.
Then we call f a modular form of weight k with respect to Γ if

1. f is holomorphic

2. f is weakly modular of weight k with respect to Γ

3. f [α]k is holomorphic at ∞ for all α ∈ SL2(Z).

In this paper, however, we will be especially concerned with a very important
subclass of modular forms, called cusp forms.

Definition 5. If f : H → C is a modular form of weight k with respect to Γ,
and a0 = 0 in the q expansion of f [α]k for all α ∈ SL2(Z), then we call f a
cusp form of weight k with respect to Γ.

We let Mk(Γ) and Sk(Γ) respectively denote the set of modular forms and
cusp forms of weight k with respect to Γ.

We now illustrate an important connection between modular forms and mod-
ular curves. Let Ω1

hol(X(Γ)) denote the complex vector space of degree 1 holo-
morphic differentials on X(Γ). Then we have the following equivalence.

Proposition 2. Let Γ be a congruence subgroup. Then we have an isomorphism
of complex vector spaces

ω : S2(Γ) → Ω1
hol(X(Γ))

f 7→ (ωj)

where (ωj) pulls back to f(τ)dτ ∈ Ω1
hol(H).

This is a special case of a much more general correspondence between auto-
morphic forms (the meremorphic analogue of a modular form) and differentials
on modular curves, but for the purposes of this paper, the above is sufficient.

Now, for a general Riemann surface X, consider the dual space Ω1
hol(X)∧ =

homC(Ω
1
hol(X),C). We know from analysis that functionals of this type are given

by integrals against the differential. Furthermore, complex analysis allows us to
represent these integrals very neatly.

If X has genus g, then it is conformally equivalent to a sphere with g handles.
The integral of a differential on X along any curve can thus be broken up into
2g integrals, half of them integrating around latitudinal loops on X, and the
other half integrating around longitudinal loops on X. We thus conclude

Ω1
hol(X)∧ =

2g⊕
j=1

R
∫
Xj
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With this perspective, it is natural to consider the subgroup given by the
first homology of X, i.e.

H1(X,Z) =
2g⊕
j=1

Z
∫
Xj

Forming the quotient gives us the object we call the Jacobian.

Definition 6. The Jacobian of X is the quotient group

Jac(X) = Ω1
hol(X)∧/H1(X,Z)

The Jacobian is more than a group. It naturally has the structure of a g
dimensional complex torus

Jac(X) ∼= Cg/Λg

If X has positive genus g > 0, then it naturally embeds in its Jacobian as

X → Jac(X), x 7→
∫ x

x0

In the special case when X is an elliptic curve, X = E, this embedding is
actually an isomorphism, i.e. E ∼= J(E) for every elliptic curve E.

Now, suppose we have a map h : X → Y Riemann surfaces. We can lift this
to the level of Jacobians. Define the forward map

hJ : Jac(X) → Jac(Y ), hJ [ϕ] = [ϕ ◦ h∗]

where h∗ is the pullback of h. The forward map acts as a change of variables
on the integral

hJ

(∑
x

nx

∫ x

x0

)
=
∑
x

nx

∫ h(x)

h(x0)

Returning to modularity, this allows us to lift the map from the modularity
theorem to the level of Jacobians, and in doing so, we derive a new version of
modularity.

Theorem 2. Let E be a complex elliptic curve with j(E) ∈ Q. Then for some
positive integer N , there exists a surjective holomorphic homomorphism of com-
plex tori

J0(N) → E

.
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Proof. Let h : X0(N) → E be the map from the modularity theorem. Then we
get

hJ : J0(N) = Jac(X0(N)) → Jac(E) ∼= E

It suffices now to show that hJ is surjective whenever h is, but we omit this.

Note that, via the correspondence between weight 2 cusp forms and differ-
entials on the modular curve, we think of an element of the Jacobian as a coset
of functionals on S2(Γ0(N)). We would like to refine this perspective so that
we can associate to the elliptic curve one specific modular form. Something else
we may observe is that j0(N) is a high dimensional complex torus, whereas E
is a 1 dimensional complex torus. We therefore might suspect that by decom-
posing J0(N) into smaller pieces somehow, we can isolate the piece from which
E arises, heuristically speaking.

Doing this effectively amounts to a certain eigenspace decomposition. In
order to understand this, we must define a certain class of operators on the
vector space S2(Γ0(N)).

Suppose n is relatively prime toN . Then let ⟨n⟩ : Mk(Γ0(N)) → Mk(Γ0(N))

be given by ⟨n⟩f = f [α]k, for any α =

(
a b
c d

)
∈ Γ0(N) with d = n mod n. If

d is not relatively prime to n, then we define ⟨d⟩ to be trivial.
Now suppose p is prime. Then let Tp : Mk(Γ0(N)) → Mk(Γ0(N)) be given

by

Tpf = f

[
Γ0(N)

(
1 0
0 p

)
Γ0(N)

]
k

Define T1 = 1. For prime powers pr, define Tpr inductively as

Tpr = TpTpr−1 − pk−1⟨p⟩Tpr−2

Finally, for all n ∈ Z+, define Tn by

Tn =
∏
i

Tp
ri
i

The collection of all operators so defined, {⟨n⟩, Tn} are known as the Hecke
operators. They form a Z-algebra, known as the Hecke algebra

TZ = Z[{⟨n⟩, Tn : n ∈ Z+}]

One can show that these operators all commute with each other. There-
fore, they can be simultaneously diagonalized, and hence the Hecke algebra has
eigenvectors. Since these eigenvectors are also forms, we call them eigenforms.
Note that since Sk(Γ) is a subspace of Mk(Γ), all of the above applies all the
same to spaces of cusp forms.

Now, recall that we have
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Jac(X(Γ)) = Ω1
hol(X(Γ))∧/H1(X(Γ),Z)

∼= S2(Γ)
∧/H1(X(Γ),Z)

Considering the Hecke operators which act on S2(Γ), we might expect that
we can lift them to an action on the Jacobian Jac(X(Γ)). Indeed, we can

T : J0(N) → J0(N), [ϕ] 7→ [ϕ ◦ T ], ϕ ∈ S2(Γ0(N))∧

for any Hecke operator T .
Now, suppose an eigenform f ∈ S2(Γ0(Mf )) is given, for some level Mf

which depends on f . We can consider the subset of the Hecke algebra on which
f vanishes.

If = {T ∈ TZ : Tf = 0}

Since TZ acts on J0(Mf ), the subgroup IfJ0(Mf ) makes sense. We are thus
lead to consider the quotient.

Definition 7. For f ∈ S2(Γ0(Mf )), define the Abelian variety associated to f
to be

Af = J0(Mf )/IfJ0(Mf )

To better understand what structure this object has, define

Vf = span(f) ⊂ S2(Γ0(Mf ))

Λf = H1(X0(Mf ),Z)
∣∣
Vf

We can then show that forming the quotient V ∧
f /Λf gives us the same result.

Proposition 3. When f is an eigenform over Q, we have an isomorphism

Af → V ∧
f /Λf , [ϕ] + IfJ0(Mf ) 7→ ϕ|Vf

+ Λf

The RHS has the structure of a 1-dimensional complex torus, hence so does
Af . The idea now is that, up to isogeny, these 1-dimesional complex tori to-
gether make up the full Jacobian J0(N). More precisely, we call a holomorphic
homomorphism f : A → B of complex tori an isogeny if f is surjective and
has finite kernel. Thus, it differs from a holomorphic isomorphism only in that
it might have a nontrivial finite kernel. We can now state the decomposition
formally.
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Theorem 3. The Jacobian associated to Γ0(N) is isogenous to a direct sum of
Abelian varieties associated to eigenforms

J0(N) →
⊕
f

A
mf

f

We are now able to state the main theorem. Factor J0(N) → E through
the isogeny J0(N) →

⊕
f A

mf

f and restrict to Af → E, and we obtain our final
version of modularity.

Theorem 4. Let E be a complex elliptic curve with j(E) ∈ Q. Then for some
positive integer N and some eigenform f ∈ S2(Γ0(N)), there exists a surjective
holomorphic homomorphism of complex tori

Af → E

We have thus successfully associated to a particular eigenform f an elliptic
curve E, namely as an image of the Abelian variet Af associated to f .
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